【題目】把[0,1]內的均勻隨機數x分別轉化為[0,2]和內的均勻隨機數y1,y2,需實施的變換分別為( )
A. ,
B.
,
C. ,
D.
,
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,
是矩形,平面
平面
,
,
,
,
為
的中點.
(1)求證:∥平面
;
(2)在線段上是否存在點
,使二面角
的大小為
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[2018·贛中聯考]李冶(1192-1279),真實欒城(今屬河北石家莊市)人,金元時期的數學家、詩人,晚年在封龍山隱居講學,數學著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑、正方形的邊長等.其中一問:現有正方形方田一塊,內部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計算)( )
A. 10步,50步 B. 20步,60步 C. 30步,70步 D. 40步,80步
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農業合作社生產了一種綠色蔬菜共噸,如果在市場上直接銷售,每噸可獲利
萬元;如果進行精加工后銷售,每噸可獲利
萬元,但需另外支付一定的加工費,總的加工
(萬元)與精加工的蔬菜量
(噸)有如下關系:
設該農業合作社將
(噸)蔬菜進行精加工后銷售,其余在市場上直接銷售,所得總利潤(扣除加工費)為
(萬元).
(1)寫出關于
的函數表達式;
(2)當精加工蔬菜多少噸時,總利潤最大,并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別是橢圓C:
的左、右焦點,其中右焦點為拋物線
的焦點,點
在橢圓C上.
(1)求橢圓C的標準方程;
(2)設與坐標軸不垂直的直線過
與橢圓C交于A、B兩點,過點
且平行直線
的直線交橢圓C于另一點N,若四邊形MNBA為平行四邊形,試問直線
是否存在?若存在,請求出
的斜率;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數),在以坐標原點為極點,
軸的正半軸為極軸的極坐標系中,圓
的方程為
.
(1)求的普通方程和
的直角坐標方程;
(2)當時,
與
相交于
,
兩點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】矩形中,
,
為
中點,將
沿
所在直線翻折,在翻折過程中,給出下列結論:
①存在某個位置,; ②存在某個位置,
;
③存在某個位置,; ④存在某個位置,
.
其中正確的是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com