精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四棱錐,,,MO分別為CDAC的中點,平面ABCD

求證:平面平面PAC

是否存在線段PM上一點N,使得平面PAB,若存在,求的值,如果不存在,說明理由.

【答案】(1)見解析(2)NPM靠近P點的三等分點時,平面PAB

【解析】

連結MO并延長交ABE,設AC,BM的交點為,故,于是,,根據勾股定理求出ACBM的值得出BF,CF,由勾股定理得逆定理得出,又由平面ABCD,故BF平面PAC,于是平面平面PAC

連結PE,則當平面PAB時,,故當時,結論成立.

解:連結MO并延長交ABE,設ACBM的交點為F

,OCD,AC的中點,,

AB的中點,

,

,

,

,,即

平面ABCD,平面ABCD,

,又平面PAC平面PAC,

平面PAC,又平面PBM

平面

NPM靠近P點的三等分點時,平面PAB

證明:連結PE,由可知,

,

,又平面PAB,平面PAB

平面PAB

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)的定義域為(-3,3),

滿足f(-x)=-f(x),且對任意xy,都有f(x)-f(y)=f(xy),當x<0時,f(x)>0,f(1)=-2.

(1)求f(2)的值;

(2)判斷f(x)的單調性,并證明;

(3)若函數g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1時,求不等式的解集;

2若關于x的不等式有實數解,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1,求函數的極值;

2 時,判斷函數在區間上零點的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若,函數圖象上是否存在兩條互相垂直的切線若存在,求出這兩條切線若不存在,說明理由.

(2)若函數上有零點求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】德國著名數學家狄利克雷在數學領域成就顯著,函數被稱為狄利克雷函數,其中為實數集,為有理數集,則關于函數有如下四個命題:

;

②函數是偶函數;

③任取一個不為零的有理數對任意的恒成立;

④存在三個點,使得為等邊三角形.

其中真命題的個數是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為,滿足 (),數列滿足 (),

1證明數列為等差數列,并求數列的通項公式;

2,求數列的前項和;

3)若,數列的前項和為,對任意的,都有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,若的充分條件.

1)求證:函數的圖像總在直線的下方;

2)是否存在實數,使得不等式對一切實數恒成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數.

(1)求不等式的解集;

(2)若對任意的,都有成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视