【題目】設A是雙曲線 的右頂點,F(c,0)是右焦點,若拋物線
的準線l上存在一點P,使∠APF=30°,則雙曲線的離心率的范圍是( )
A.[2,+∞)
B.(1,2]
C.(1,3]
D.[3,+∞)
科目:高中數學 來源: 題型:
【題目】設函數f(x)滿足xf′(x)+f(x)= ,f(e)=
,則函數f(x)( )
A.在(0,e)上單調遞增,在(e,+∞)上單調遞減
B.在(0,+∞)上單調遞增
C.在(0,e)上單調遞減,在(e,+∞)上單調遞增
D.在(0,+∞)上單調遞減
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是邊長為2的等邊三角形,E是BC的中點.
(1)求證:AE∥平面PCD;
(2)記平面PAB與平面PCD的交線為l,求二面角C﹣l﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下排列的數是二項式系數在三角形中的幾何排列,在我國南宋數學家楊輝1261年所著 的《詳解九章算法》一書里就出現了.在歐洲,這個表叫做帕斯卡三角形,它出現要比楊輝遲393年. 那么,第2017行第2016個數是( )
A.2016
B.2017
C.2033136
D.2030112
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三棱柱ABC﹣A1B1C1中,側棱 ,AB=2,D,E分別為棱AC,B1C1的中點,M,N分別為線段AC1和BE的中點.
(1)求證:直線MN∥平面ABC;
(2)求二面角C﹣BD﹣E的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從雙曲線 ﹣
=1(a>0,b>0)的左焦點F引圓x2+y2=a2的切線,切點為T,延長FT交雙曲線右支于P點,若M為線段FP的中點,O為坐標原點,則|MO|﹣|MT|等于( )
A.c﹣a
B.b﹣a
C.a﹣b
D.c﹣b
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)為R上的可導函數,且對x∈R,均有f(x)>f′(x),則有( )
A.e2016f(﹣2016)<f(0),f(2016)<e2016f(0)
B.e2016f(﹣2016)>f(0),f(2016)>e2016f(0)
C.e2016f(﹣2016)<f(0),f(2016)>e2016f(0)
D.e2016f(﹣2016)>f(0),f(2016)<e2016f(0)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com