【題目】如圖,正三棱柱ABC﹣A1B1C1中,側棱 ,AB=2,D,E分別為棱AC,B1C1的中點,M,N分別為線段AC1和BE的中點.
(1)求證:直線MN∥平面ABC;
(2)求二面角C﹣BD﹣E的余弦值.
【答案】
(1)證明:取棱CC1的中點F,連MF,NF,則MF∥AC,NF∥BC,
∵MF平面ADC,AC平面ADC,
∴MF∥平面ADC,同理NF∥平面ADC
又∵MF∩NF=F,且MF平面MNF,NF平面MNF,
∴平面MNF∥平面ADC
又MN平面MNF,
∴MN∥平面ADC
(2)解:取線段BC的中點O,連AO,則AO⊥BC,連OE,則OE∥BB1,
又因為BB1⊥平面ABC,所以OE⊥平面ABC
以O為坐標原點,分別以 ,
,
為x,y,z軸正方向建立空間直角坐標系O﹣xyz.
設AB=2,則 ,各點坐標如下:
,C(﹣1,0,0),
,
,
∵平面BCD即平面Oxz∴取平面ADB的一個法向量為
設平面BDE的法向量為 ,則
,
又 ,
∴ 令
得平面ADB1的一個法向量為
,
∴
故二面角B1﹣AD﹣B的余弦值為
【解析】(Ⅰ)取棱CC1的中點F,連MF,NF,推出MF∥AC,NF∥BC,然后證明MF∥平面ADC,NF∥平面ADC,證明平面MNF∥平面ADC,推出MN∥平面ADC.(Ⅱ)取線段BC的中點O,連AO,連OE,以O為坐標原點,分別以 ,
,
為x,y,z軸正方向建立空間直角坐標系O﹣xyz.設AB=2,求出相關點的坐標,求出平面ADB的一個法向量,平面BDE的法向量,通過向量的數量積求解二面角B1﹣AD﹣B的余弦值.
【考點精析】本題主要考查了直線與平面平行的判定的相關知識點,需要掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=axln(x+1)+x+1(x>﹣1,a∈R).
(1)若 ,求函數f(x)的單調區間;
(2)當x≥0時,不等式f(x)≤ex恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|x2﹣2x﹣1|,若a>b>1,且f(a)=f(b),則ab﹣a﹣b的取值范圍為( )
A.(﹣2,3)
B.(﹣2,2)
C.(1,2)
D.(﹣1,1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A是雙曲線 的右頂點,F(c,0)是右焦點,若拋物線
的準線l上存在一點P,使∠APF=30°,則雙曲線的離心率的范圍是( )
A.[2,+∞)
B.(1,2]
C.(1,3]
D.[3,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C1:(x+1)2+(y﹣1)2=4,圓C2與圓C1關于直線x﹣y﹣1=0對稱,則圓C2的方程為( )
A.(x+2)2+(y﹣2)2=4
B.(x﹣2)2+(y+2)2=4
C.(x+2)2+(y+2)2=4
D.(x﹣2)2+(y﹣2)2=4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C1的方程為 +
=1,雙曲線C2的左、右焦點分別是C1的左、右頂點,而以雙曲線C2的左、右頂點分別是橢圓C1的左、右焦點.
(1)求雙曲線C2的方程;
(2)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C2相交于不同的兩點E、F,若△OEF的面積為2 ,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了回饋顧客,某商場在元旦期間舉行購物抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為 ,中獎可以獲得3分;方案乙的中獎率為
,中獎可以獲得2分;未中獎則不得分,每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,抽獎結束后憑分數兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為X,求X≥3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,分別求兩種方案下小明、小紅累計得分的分布列,并指出為了累計得分較大,兩種方案下他們選擇何種方案較好,并給出理由?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據微信同程旅游的調查統計顯示,參與網上購票的1000位購票者的年齡(單位:歲)情況如圖所示.
(1)已知中間三個年齡段的網上購票人數成等差數列,求a,b的值;
(2)為鼓勵大家網上購票,該平臺常采用購票就發放酒店入住代金券的方法進行促銷,具體做法如下:年齡在[30,50)歲的每人發放20元,其余年齡段的每人發放50元,先按發放代金券的金額采用分層抽樣的方式從參與調查的1000位網上購票者中抽取5人,并在這5人中隨機抽取3人進行回訪調查,求此3人獲得代金券的金額總和為90元的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com