【題目】設、
分別是橢圓
的左、右焦點.
(1)若是該橢圓上的一個動點,求
的最大值和最小值;
(2)設過定點的直線與橢圓交于不同的兩點
、
,且
為銳角(其中
為坐標原點),求直線
的斜率
的取值范圍.
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A. 袋中有形狀、大小、質地完全一樣的個紅球和
個白球,從中隨機抽出一個球,一定是紅球
B. 天氣預報“明天降水概率”,是指明天有
的時間會下雨
C. 某地發行一種福利彩票,中獎率是千分之一,那么,買這種彩票張,一定會中獎
D. 連續擲一枚均勻硬幣,若次都是正面朝上,則第六次仍然可能正面朝上
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某山區養殖場散養的3500頭豬中隨機抽取5頭,測量豬的體長x(cm)和體重y(kg),得如下測量數據:
豬編號 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 181 | 166 | 185 | 180 |
y | 95 | 100 | 97 | 103 | 101 |
(1)當且僅當x,y滿足:x≥180且y≥100時,該豬為優等品,用上述樣本數據估計山區養殖場散養的3500頭豬中優等品的數量;
(2)從抽取的上述5頭豬中,隨機抽取2頭中優等品數x的分布列及其數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線方程為,問:是否存在過點M(1,1)的直線l,使得直線與雙曲線交于P,Q兩點,且M是線段PQ的中點?如果存在,求出直線的方程,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:函數,當x∈(-3,2)時,
>0,當x∈(-
,-3)
(2,+
)時,
<0
(I)求a,b的值;
(II)若不等式的解集為R,求實數c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= (a>0,且a≠1)在R上單調遞減,且關于x的方程|f(x)|=2﹣x恰好有兩個不相等的實數解,則a的取值范圍是( )
A.(0, ]
B.[ ,
]
C.[ ,
]∪{
}
D.[ ,
)∪{
}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某保險的基本保費為a(單位:元),繼續購買該保險的投保人成為續保人,續保人本年度的保費與其上年度出險次數的關聯如下:
上年度出險次數 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
設該險種一續保人一年內出險次數與相應概率如下:
一年內出險次數 | 0 | 1 | 2 | 3 | 4 | ≥5 |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(1)求一續保人本年度的保費高于基本保費的概率;
(2)若一續保人本年度的保費高于基本保費,求其保費比基本保費高出60%的概率;
(3)求續保人本年度的平均保費與基本保費的比值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某廣場中間有一塊邊長為2百米的菱形狀綠化區ABCD,其中BMN是半徑為1百米的扇形,∠ABC= .管理部門欲在該地從M到D修建小路:在
上選一點P(異于M,N兩點),過點P修建與BC平行的小路PQ.
(1)若∠PBC= ,求PQ的長度;
(2)當點P選擇在何處時,才能使得修建的小路 與PQ及QD的總長最?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C1: +
=1,圓C2:x2+y2=t經過橢圓C1的焦點.
(1)設P為橢圓上任意一點,過點P作圓C2的切線,切點為Q,求△POQ面積的取值范圍,其中O為坐標原點;
(2)過點M(﹣1,0)的直線l與曲線C1 , C2自上而下依次交于點A,B,C,D,若|AB|=|CD|,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com