精英家教網 > 高中數學 > 題目詳情

【題目】空氣質量按照空氣質量指數大小分為七檔(五級),相對應空氣質量的七個類別,指數越大,說明污染的情況越嚴重,對人體危害越大.

指數

級別

類別

戶外活動建議

可正;顒

輕微污染

易感人群癥狀有輕度加劇,健康人群出現刺激癥狀,心臟病和呼吸系統疾病患者應減少體積消耗和戶外活動.

輕度污染

中度污染

心臟病和肺病患者癥狀顯著加劇,運動耐受力降低,健康人群中普遍出現癥狀,老年人和心臟病、肺病患者應減少體力活動.

中度重污染

重污染

健康人運動耐受力降低,由明顯強烈癥狀,提前出現某些疾病,老年人和病人應當留在室內,避免體力消耗,一般人群應盡量減少戶外活動.

現統計邵陽市市區2016年1月至11月連續60天的空氣質量指數,制成如圖所示的頻率分布直方圖.

(1)求這60天中屬輕度污染的天數;

(2)求這60天空氣質量指數的平均值;

(3)將頻率分布直方圖中的五組從左到右依次命名為第一組,第二組,…,第五組.從第一組和第五組中的所有天數中抽出兩天,記它們的空氣質量指數分別為, ,求事件的概率.

【答案】1;(2;(3.

【解析】(1)依題意知,輕度污染即空氣質量指數在之間,共有天. 

(2)由直方圖知60天空氣質量指數的平均值為

(3)第一組和第五組的天數分別為天, 天,

則從9天中抽出2天的一切可能結果的基本事件有36種,

知兩天只能在同一組中,而兩天在同一組中的基本事件有18種,

表示這一事件,則概率

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=2cos,直線l的參數方程為 (t為參數),直線l與圓C交于A,B兩點,P是圓C上不同于A,B的任意一點.

(1)求圓心的極坐標;

(2)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義:對于實數和兩定點,在某圖形上恰有個不同的點,使得,稱該圖形滿足“度契合”.若邊長為4的正方形中,,且該正方形滿足“4度契合”,則實數的取值范圍是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列,滿足,數列項和為.

(1)若數列是首項為正數,公比為的等比數列.

①求證:數列為等比數列;

②若對任意恒成立,求的值;

(2)已知為遞增數列,即.若對任意,數列中都存在一項使得,求證:數列為等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某投資人打算投資甲、乙兩個項目根據預測,、乙項目可能的最大盈利率分別為100%50%,可能的最大虧損率分別為30%10%,投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元,問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數).

(Ⅰ)若函數有零點,求實數的取值范圍;

(Ⅱ)若對任意的,都有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 左焦點,左頂點,橢圓上一點滿足軸,且點軸下方, 連線與左準線交于點,過點任意引一直線與橢圓交于,連結交于點,若實數滿足: , .

(1)求的值;

(2)求證:點在一定直線上.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,△PAD為正三角形,平面PAD⊥平面ABCD,ABCDABAD,CD=2AB=2AD=4.

(1)求證:平面PCD⊥平面PAD;

(2)求三棱錐PABC的體積;

(3)在棱PC上是否存在點E,使得BE∥平面PAD?若存在,

請確定點E的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn,a4=2且,數列滿足 ,

(1)證明:數列{an}為等差數列;

(2)是否存在正整數,(1<),使得成等比數列,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视