【題目】已知數列{an}的前n項和為Sn,a4=2且,數列
滿足
,
(1)證明:數列{an}為等差數列;
(2)是否存在正整數,
(1<
),使得
成等比數列,若存在,求出
的值;若不存在,請說明理由.
【答案】(1)證明見解析.
(2) 存在符合.
【解析】分析:(1)2Sn+1=( n+1)an+1-(n+1),2Sn= nan-n,兩式做查得到an+2+an=2an+1,所以數列{an}是等差數列;(2),
成等比數列,即
,代入表達式可得
,分析得到結果.
詳解:
(1) 由已知得2Sn= nan-n① ,
故當n=1時,2S1=a1-1,即a1=-1,
又2Sn+1=( n+1)an+1-(n+1)②,
②-①得2Sn+1-2Sn=(n+1)an+1-nan-1,
即(n-1)an+1-nan-1=0 ③,
又nan+2-(n+1)an+1-1=0④
④-③得,nan+2-2nan+1+nan=0,
即an+2+an=2an+1,所以數列{an}是等差數列.
(2)因為a1=-1,a4=2,所以公差為1
an=-1+(n-1)×1=n-2,所以
假設正整數,
(1<
),使得
成等比數列,即
,
可得,
又
當時,
關于
遞減,(同理當
時,
關于
遞減)
當
時,符合
,此時
,易得
,不滿足
當時, 符合
,此時
,此時
當時,
,不符合
綜上: 存在符合.
科目:高中數學 來源: 題型:
【題目】空氣質量按照空氣質量指數大小分為七檔(五級),相對應空氣質量的七個類別,指數越大,說明污染的情況越嚴重,對人體危害越大.
指數 | 級別 | 類別 | 戶外活動建議 |
Ⅰ | 優 | 可正;顒 | |
Ⅱ | 良 | ||
Ⅲ | 輕微污染 | 易感人群癥狀有輕度加劇,健康人群出現刺激癥狀,心臟病和呼吸系統疾病患者應減少體積消耗和戶外活動. | |
輕度污染 | |||
Ⅳ | 中度污染 | 心臟病和肺病患者癥狀顯著加劇,運動耐受力降低,健康人群中普遍出現癥狀,老年人和心臟病、肺病患者應減少體力活動. | |
中度重污染 | |||
Ⅴ | 重污染 | 健康人運動耐受力降低,由明顯強烈癥狀,提前出現某些疾病,老年人和病人應當留在室內,避免體力消耗,一般人群應盡量減少戶外活動. |
現統計邵陽市市區2016年1月至11月連續60天的空氣質量指數,制成如圖所示的頻率分布直方圖.
(1)求這60天中屬輕度污染的天數;
(2)求這60天空氣質量指數的平均值;
(3)將頻率分布直方圖中的五組從左到右依次命名為第一組,第二組,…,第五組.從第一組和第五組中的所有天數中抽出兩天,記它們的空氣質量指數分別為,
,求事件
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量,函數
的最小值為
.
(1)當時,求
的值;
(2)求;
(3)已知函數為定義在上的增函數,且對任意的
都滿足
,問:是否存在這樣的實數
,使不等式
對所有
恒成立,若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求函數
在點
處的切線方程;
(2)求函數的極值;
(3)若函數在區間
上是增函數,試確定
的取值范圍.
【答案】(1);(2)當
時,
恒成立,
不存在極值.當
時,
有極小值
無極大值.(3)
.
【解析】試題分析:
(1)當時,求得
,得到
的值,即可求解切線方程.
(2)由定義域為,求得
,分
和
時分類討論得出函數的單調區間,即可求解函數的極值.
(3)根據題意在
上遞增,得
對
恒成立,進而求解實數
的取值范圍.
試題解析:
(1)當時,
,
,
,又
,∴切線方程為
.
(2)定義域為,
,當
時,
恒成立,
不存在極值.
當時,令
,得
,當
時,
;當
時,
,
所以當時,
有極小值
無極大值.
(3)∵在
上遞增,∴
對
恒成立,即
恒成立,∴
.
點睛:導數是研究函數的單調性、極值(最值)最有效的工具,而函數是高中數學中重要的知識點,所以在歷屆高考中,對導數的應用的考查都非常突出 ,本專題在高考中的命題方向及命題角度 從高考來看,對導數的應用的考查主要從以下幾個角度進行: (1)考查導數的幾何意義,往往與解析幾何、微積分相聯系. (2)利用導數求函數的單調區間,判斷單調性;已知單調性,求參數. (3)考查數形結合思想的應用.
【題型】解答題
【結束】
22
【題目】已知圓:
和點
,
是圓
上任意一點,線段
的垂直平分線和
相交于點
,
的軌跡為曲線
.
(1)求曲線的方程;
(2)點是曲線
與
軸正半軸的交點,直線
交
于
、
兩點,直線
,
的斜率分別是
,
,若
,求:①
的值;②
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從裝有個不同小球的口袋中取出
個小球(
),共有
種取法。在這
種取法中,可以視作分為兩類:第一類是某指定的小球未被取到,共有
種取法;第二類是某指定的小球被取到,共有
種取法。顯然
,即有等式:
成立。試根據上述想法,下面式子
(其中
)應等于 ( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線 ,曲線C2的參數方程為:
,(θ為參數),以O為極點,x軸的正半軸為極軸的極坐標系.
(1)求C1 , C2的極坐標方程;
(2)射線 與C1的異于原點的交點為A,與C2的交點為B,求|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數同時滿足:①在定義域內存在
,使得
成立;
②不等式的解集有且只有一個元素;數列
的前
項和為
,
,
,
。
(Ⅰ)求的表達式;
(Ⅱ)求數列的通項公式;
(Ⅲ)設,
,
的前
項和為
,若
對任意
,且
恒成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com