精英家教網 > 高中數學 > 題目詳情

【題目】已知,其中.

1)當時,求函數單調遞增區間;

2)求函數的圖象在點處的切線方程;

3)是否存在實數的值,使得上有最大值或最小值,若存在,求出實數的取值范圍;若不存在,請說明理由.

【答案】1;(2;(3)存在,.

【解析】

1)由題意,當時,求得,令,即可求解函數的單調遞增區間;

2)由,求得,結合直線的點斜式方程,即可求解;

3)令,,求得,,結合,分類討論,即可求解.

1)由題意,當時,,則,

,解得,

所以函數的單調遞增區間為.

2)由函數,可得

解得,

所以函數的圖象在點處的切線方程為,

.

3)由

,,

可得,.

①當時,即時,,

所以

所以上單調遞增,

所以上不存在最大值和最小值.

②當時,

設方程的兩根為

,的變化情況如下表:

0

0

遞增

極大值

遞減

極小值

遞增

時,,;

時,.

所以要使上有最大值或最小值,只需滿足,即有解.

所以,

解得.

綜上可得.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知動直線軸交于點,過點作直線,交軸于點,點滿足,的軌跡為.

1)求的方程;

2)已知點,點,過作斜率為的直線交,兩點,延長分別交,兩點,記直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于⊙Ox2+y21來說,P是坐標系內任意一點,點P到⊙O的距離SP的定義如下:若PO重合,SPr;若P不與O重合,射線OP與⊙O的交點為A,SPAP的長度(如圖).

1)直線2x+2y+10在圓內部分的點到⊙O的最長距離為_____;

2)若線段MN上存在點T,使得:

①點T在⊙O內;

P∈線段MN,都有STSP成立.則線段MN的最大長度為_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知{an}是等差數列,其前n項和Snn22n+b1,{bn}是等比數列,其前n項和Tn,則數列{ bn +an}的前5項和為( 。

A.37B.-27C.77D.46

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】新高考最大的特點就是取消文理科,除語文、數學、外語之外,從物理、化學、生物、政治、歷史、地理這科中自由選擇三門科目作為選考科目.某研究機構為了了解學生對全理(選擇物理、化學、生物)的選擇是否與性別有關,覺得從某學校高一年級的名學生中隨機抽取男生,女生各人進行模擬選科.經統計,選擇全理的人數比不選全理的人數多.

1)請完成下面的列聯表;

2)估計有多大把握認為選擇全理與性別有關,并說明理由;

3)現從這名學生中已經選取了男生名,女生名進行座談,從中抽取名代表作問卷調查,求至少抽到一名女生的概率.

附:,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的離心率為,左、右頂點分別為A,B,點M是橢圓C上異于A,B的一點,直線AMy軸交于點P

(Ⅰ)若點P在橢圓C的內部,求直線AM的斜率的取值范圍;

(Ⅱ)設橢圓C的右焦點為F,點Qy軸上,且∠PFQ=90°,求證:AQBM

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以下四個結論,正確的是(

①質檢員從勻速傳遞的產品生產流水線上,每間隔15分鐘抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;

②在回歸直線方程中,當變量每增加一個單位時,變量增加0.13個單位;

③在頻率分布直方圖中,所有小矩形的面積之和是1;

④對于兩個分類變量,求出其統計量的觀測值,觀測值越大,我們認為有關系的把握程度就越大.

A.②④B.②③C.①③D.③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面為菱形,,平面底面,上的一點.

1)證明:平面平面

2)若直線平面,且,求直線與平面所成角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為為參數),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點是曲線上的動點,點的延長線上,且,點的軌跡為

(1)求直線及曲線的極坐標方程;

(2)若射線與直線交于點,與曲線交于點(與原點不重合),求的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视