【題目】已知動直線:
與
軸交于點
,過點
作直線
,交
軸于點
,點
滿足
,
的軌跡為
.
(1)求的方程;
(2)已知點,點
,過
作斜率為
的直線交
于
,
兩點,延長
,
分別交
于
,
兩點,記直線
的斜率為
,求證:
為定值.
科目:高中數學 來源: 題型:
【題目】如圖是甲、乙、丙三個企業的產品成本(單位:萬元)及其構成比例,則下列判斷正確的是( 。
A. 乙企業支付的工資所占成本的比重在三個企業中最大
B. 由于丙企業生產規模大,所以它的其他費用開支所占成本的比重也最大
C. 甲企業本著勤儉創業的原則,將其他費用支出降到了最低點
D. 乙企業用于工資和其他費用支出額比甲丙都高
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在區間
上的最大值為9,最小值為1,記
;
(1)求實數的值;
(2)若不等式成立,求實數
的取值范圍;
(3)定義在上的函數
,設
,其中
將區間
任意劃分成
個小區間,如果存在一個常數
,使得和式
恒成立,則稱函數
為在
上的有界變差函數,試判斷函數
是否為在
上的有界變差函數?若是,求
的最小值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國武漢于2019年10月18日至2019年10月27日成功舉辦了第七屆世界軍人運動會.來自109個國家的9300余名運動員同臺競技.經過激烈的角逐,獎牌榜的前3名如下:
國家 | 金牌 | 銀牌 | 銅牌 | 獎牌總數 |
中國 | 133 | 64 | 42 | 239 |
俄羅斯 | 51 | 53 | 57 | 161 |
巴西 | 21 | 31 | 36 | 88 |
某數學愛好者采用分層抽樣的方式,從中國和巴西獲得金牌選手中抽取了22名獲獎代表.從這22名中隨機抽取3人, 則這3人中中國選手恰好1人的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,其中
.
(1)當時,求函數
單調遞增區間;
(2)求函數的圖象在點
處的切線方程;
(3)是否存在實數的值,使得
在
上有最大值或最小值,若存在,求出實數
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com