精英家教網 > 高中數學 > 題目詳情

【題目】已知動直線軸交于點,過點作直線,交軸于點,點滿足的軌跡為.

1)求的方程;

2)已知點,點,過作斜率為的直線交,兩點,延長,分別交,兩點,記直線的斜率為,求證:為定值.

【答案】1 2)證明見解析

【解析】

1)動直線軸交于點.由直線,可得直線的方程為:,交軸于點,.設,點滿足,代入即可得出軌跡方程

2)設,的坐標依次為,2,3,.直線的方程為:,與拋物線方程聯立化為:,設直線的方程為:,與拋物線方程聯立化為:,利用根與系數的關系、斜率計算公式即可得出.

解:(1)將代入,∴,

,∴可設,將代入,∴.

,則,

,得,即,

的方程為.

2)設,,,,直線的方程為,

,消去,∴,,

的方程為,由,消去,

,即,同理

由已知得,,

,

,∴為定值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

1)討論的單調性;

2)設,且,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直角中,,,D,E分別是AB,BC邊的中點,沿DE折起至,且.

1)求四棱錐的體積;

2)求證:平面平面ACF.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在斜三棱柱中,平面平面,,,均為正三角形,EAB的中點.

(Ⅰ)證明:平面;

(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是甲、乙、丙三個企業的產品成本(單位:萬元)及其構成比例,則下列判斷正確的是( 。

A. 乙企業支付的工資所占成本的比重在三個企業中最大

B. 由于丙企業生產規模大,所以它的其他費用開支所占成本的比重也最大

C. 甲企業本著勤儉創業的原則,將其他費用支出降到了最低點

D. 乙企業用于工資和其他費用支出額比甲丙都高

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)討論的單調性;

2)設,若函數的兩個極值點恰為函數的兩個零點,且的范圍是,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數在區間上的最大值為9,最小值為1,記

1)求實數的值;

2)若不等式成立,求實數的取值范圍;

3)定義在上的函數,設,其中將區間任意劃分成個小區間,如果存在一個常數,使得和式恒成立,則稱函數為在上的有界變差函數,試判斷函數是否為在上的有界變差函數?若是,求的最小值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國武漢于20191018日至20191027日成功舉辦了第七屆世界軍人運動會.來自109個國家的9300余名運動員同臺競技.經過激烈的角逐,獎牌榜的前3名如下:

國家

金牌

銀牌

銅牌

獎牌總數

中國

133

64

42

239

俄羅斯

51

53

57

161

巴西

21

31

36

88

某數學愛好者采用分層抽樣的方式,從中國和巴西獲得金牌選手中抽取了22名獲獎代表.從這22名中隨機抽取3人, 則這3人中中國選手恰好1人的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,其中.

1)當時,求函數單調遞增區間;

2)求函數的圖象在點處的切線方程;

3)是否存在實數的值,使得上有最大值或最小值,若存在,求出實數的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视