精英家教網 > 高中數學 > 題目詳情

【題目】函數的定義域為( )
A.
B.
C.
D.

【答案】C
【解析】由函數的表達式可知,函數的定義或應滿足條件:,解之得,JI既函數的定義或為,故應選C.

【考點精析】利用函數的定義域及其求法和函數的值對題目進行判斷即可得到答案,需要熟知求函數的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數;②是分式函數時,定義域是使分母不為零的一切實數;③是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零;函數值的求法:①配方法(二次或四次);②“判別式法”;③反函數法;④換元法;⑤不等式法;⑥函數的單調性法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列說法中,正確的是
·(1)任取x>0,均有3x>2x
·(2)當a>0,且a≠1時,有a3>a2;
·(3)y=( x是減函數;
·(4)函數f(x)在x>0時是增函數,x<0也是增函數,所以f(x)是增函數;
·(5)若函數f(x)=ax2+bx+2與x軸沒有交點,則b2﹣8a<0且a>0;
·(6)y=x2﹣2|x|﹣3的遞增區間為[1,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若二次函數f(x)=ax2+bx+c(a,b,c∈R)滿足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)若在區間[﹣1,1]上,不等式f(x)>6x+m恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a∈R,函數f(x)=x|x﹣a|.
(1)當a=2時,將函數f(x)寫成分段函數的形式,并作出函數的簡圖,寫出函數y=f(x)的單調遞增區間;
(2)當a>2時,求函數y=f(x)在區間[1,2]上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在銳角△ABC中,內角A,B,C的對邊分別為a,b,c,且2asinB= b.
(1)求角A的大;
(2)若a=4,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a為常數) (Ⅰ)當a=4時,求函數y=f(x)的單調區間;
(Ⅱ)若對于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范圍;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一個實根,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱柱中,已知側棱底面的中點, .

(1)證明: 平面;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題P:4x﹣a2x+1≥0對x∈[﹣1,1]恒成立,命題Q:f(x)=log2(ax2﹣2x+ )的值域是R,若滿足P且Q為假,P或Q為真,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直線AB經過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連接EC、CD.

(1)求證:直線AB是⊙O的切線;
(2)若tan∠CED= ,⊙O的半徑為3,求OA的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视