精英家教網 > 高中數學 > 題目詳情

【題目】設橢圓,過點的直線,分別交于不同的兩點、,直線恒過點

1)證明:直線的斜率之和為定值;

(2)直線,分別與軸相交于,兩點,在軸上是否存在定點,使得為定值?若存在,求出點的坐標,若不存在,請說明理由.

【答案】(1)證明見解析 (2) 軸上存在定點使為定值,該定值為1

【解析】

1)設Px1y1),Qx2,y2),聯立直線ykx4)和橢圓方程,運用韋達定理,直線PQ、AP、AQ的斜率分別為kk1,k2,運用直線的斜率公式,化簡整理即可得證;

2)設Mx3,0),Nx40),由y1k1x2),令y0,求得M的坐標,同理可得N的坐標,再由兩點的距離公式,化簡整理可得所求乘積.

(1)設,直線的斜率分別為,由

,可得:,

(2)由,令,得,即

同理,即,設軸上存在定點

,要使為定值,即

軸上存在定點使為定值,該定值為1

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某企業擁有3條相同的生產線,每條生產線每月至多出現一次故障.各條生產線是否出現故障相互獨立,且出現故障的概率為.

1)求該企業每月有且只有1條生產線出現故障的概率;

2)為提高生產效益,該企業決定招聘名維修工人及時對出現故障的生產線進行維修.已知每名維修工人每月只有及時維修1條生產線的能力,且每月固定工資為1萬元.此外,統計表明,每月在不出故障的情況下,每條生產線創造12萬元的利潤;如果出現故障能及時維修,每條生產線創造8萬元的利潤;如果出現故障不能及時維修,該生產線將不創造利潤,以該企業每月實際獲利的期望值為決策依據,在之中選其一,應選用哪個?(實際獲利=生產線創造利潤-維修工人工資)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某省在2017年啟動了“3+3”高考模式.所謂“3+3”高考模式,就是語文、數學、外語(簡稱語、數、外)為高考必考科目,從物理、化學、生物、政治、歷史、地理(簡稱理、化、生、政、史、地)六門學科中任選三門作為選考科目.該省某中學2017級高一新生共有990人,學籍號的末四位數從00010990.

1)現從高一學生中抽樣調查110名學生的選考情況,問:采用什么樣的抽樣方法較為恰當?(只寫出結論,不需要說明理由)

2)據某教育機構統計,學生所選三門學科在將來報考專業時受限制的百分比是不同的.該機構統計了受限百分比較小的十二種選擇的百分比值,制作出如下條形圖.

設以上條形圖中受限百分比的均值為,標準差為.如果一個學生所選三門學科專業受限百分比在區間內,我們稱該選擇為恰當選擇”.該校李明同學選擇了化學,然后從余下五門選考科目中任選兩門.問李明的選擇為恰當選擇"的概率是多少?(均值,標準差均精確到0.1

(參考公式和數據:,)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“干支紀年法”是中國歷法上自古以來就一直使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字開始,“地支”以“子”字開始,兩者按照干支順序相配,構成了“干支紀年法”,其相配順序為:甲子、乙丑、丙寅癸酉、甲戌、乙亥、丙子癸未、甲申、乙酉、丙戌癸巳癸亥,60為一個周期,周而復始,循環記錄.按照“干支紀年法”,中華人民共和國成立的那年為己丑年,則2013年為(

A.甲巳年B.壬辰年C.癸巳年D.辛卯年

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,,是曲線段是參數,)的左、右端點,上異于,的動點,過點作直線的垂線,垂足為.

1)建立適當的極坐標系,寫出點軌跡的極坐標方程;

2)求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數gx=,fx=g'x-a是常數).若對aR,函數hx=kxk是常數)的圖象與曲線y=fx)總相切于一個定點.

1)求k的值;

2)若對∈(0,+∞),[f-h][f-h]0,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業得到了充分發展,尤其是黨的十八大以來,文化事業發展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業機構數(個)與對應年份編號的散點圖(為便于計算,將 2013 年編號為 1,2014 年編號為 2,…,2018年編號為 6,把每年的公共圖書館業機構個數作為因變量,把年份編號從 1 到 6 作為自變量進行回歸分析),得到回歸直線,其相關指數,給出下列結論,其中正確的個數是( )

①公共圖書館業機構數與年份的正相關性較強

②公共圖書館業機構數平均每年增加13.743個

③可預測 2019 年公共圖書館業機構數約為3192個

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=fx),若存在x0,使得fx0=x0,則稱x0是函數y=fx)的一個不動點,設二次函數fx=ax2+b+1x+b-2

)當a=2,b=1時,求函數fx)的不動點;

)若對于任意實數b,函數fx)恒有兩個不同的不動點,求實數a的取值范圍;

)在()的條件下,若函數y=fx)的圖象上A,B兩點的橫坐標是函數fx)的不動點,且直線是線段AB的垂直平分線,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在平面直角坐標系中,中心在原點,焦點在y軸上的橢圓C與橢圓的離心率相同,且橢圓C短軸的頂點與橢圓E長軸的頂點重合.

1)求橢圓C的方程;

2)若直線l與橢圓E有且僅有一個公共點,且與橢圓C交于不同兩點A,B,求的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视