【題目】連續投骰子兩次得到的點數分別為m,n,作向量(m,n),則
與
(1,﹣1)的夾角成為直角三角形內角的概率是_____.
科目:高中數學 來源: 題型:
【題目】已知拋物線(
),過點
(
)的直線
與
交于
、
兩點.
(1)若,求證:
是定值(
是坐標原點);
(2)若(
是確定的常數),求證:直線
過定點,并求出此定點坐標;
(3)若的斜率為1,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩動圓和
(
),把它們的公共點的軌跡記為曲線
,若曲線
與
軸的正半軸的交點為
,且曲線
上的相異兩點
滿足:
.
(1)求曲線的軌跡方程;
(2)證明直線恒經過一定點,并求此定點的坐標;
(3)求面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若有窮數列(
)滿足:①
;②
.則稱該數列為“
階非凡數列”
(1)分別寫出一個單調遞增的“階非凡數列”和一個單調遞減的“
階非凡數列”;
(2)設,若“
階非凡數列”是等差數列,求其通項公式;
(3)記“階非凡數列”的前
項的和為
,求證:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準線的距離等于5.
(1)求拋物線G的方程;
(2)如圖,過拋物線G的焦點的直線依次與拋物線G及圓x2+(y﹣1)2=1交于A、C、D、B四點,試證明|AC||BD|為定值;
(3)過A、B分別作拋物G的切線l1,l2且l1,l2交于點M,試求△ACM與△BDM面積之和的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位有員工1000名,平均每人每年創造利潤10萬元,為了增加企業競爭力,決定優化產業結構,調整出(
)名員工從事第三產業,調整后這
名員工他們平均每人創造利潤為
萬元,剩下的員工平均每人每年創造的利潤可以提高
.
(1)若要保證剩余員工創造的年總利潤不低于原來1000名員工創造的年總利潤,則最多調整多少名員工從事第三產業?
(2)設,若調整出的員工創造出的年總利潤始終不高于剩余員工創造的年總利潤,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,側棱
底面
,底面
是直角梯形,
∥
,
,且
,
,
是棱
的中點 .
(Ⅰ)求證:∥平面
;
(Ⅱ)求平面與平面
所成銳二面角的余弦值;
(Ⅲ)設點是線段
上的動點,
與平面
所成的角為
,求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com