【題目】已知f(x)=|ax﹣1|(a∈R),不等式f(x)>5的解集為{x|x<﹣3或x>2}.
(1)求a的值;
(2)解不等式f(x)﹣f( )≤2.
【答案】
(1)解:由|ax﹣1|>5,得到ax>6或ax<﹣4,
當a=0時,不等式無解.
當a<0時, 或
.
由題意可得﹣3,2為|ax﹣1|=5的兩根,
則 ,解得a=﹣2.
當a>0時, 或
.
故 ,此時a無解.
綜上所述,a=﹣2.
(2)解:f(x)=|﹣2x﹣1|,
f(x)﹣f( )≤2,即為:
|2x+1|﹣|x+1|≤2 或
或
,
即﹣2≤x<﹣1或 或
.
故原不等式的解集為{x|﹣2≤x≤2}.
【解析】(1)討論a=0,a>0,a<0,由題意可得﹣3,2為|ax﹣1|=5的兩根,運用絕對值不等式的解法,即可得到a=﹣2:(2)運用絕對值的含義,討論x的范圍可得 或
或
,解不等式即可得到所求解集.
科目:高中數學 來源: 題型:
【題目】某特色餐館開通了美團外賣服務,在一周內的某特色菜外賣份數(份)與收入
(元)之間有如下的對應數據:
外賣份數 | 2 | 4 | 5 | 6 | 8 |
收入 | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據此估計外賣份數為12份時,收入為多少元.
注:①參考公式:線性回歸方程系數公式,
;
②參考數據: ,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)證明CD⊥AE;
(2)證明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發生有責任道路交通事故 | 下浮10% | |
上兩個年度未發生有責任道路交通事故 | 下浮20% | |
上三個及以上年度未發生有責任道路交通事故 | 下浮30% | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | ||||||
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規定,
.某同學家里有一輛該品牌車且車齡剛滿三年,記
為該品牌車在第四年續保時的費用,求
的分布列與數學期望值;(數學期望值保留到個位數字)
某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設Sn是公差不為0的等差數列{an}的前n項和,且S1 , S2 , S4成等比數列,a5=9.
(1)求數列{an}的通項公式;
(2)證明: +
+…+
<
(n∈N*).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com