【題目】對于函數f(x)= ,有下列5個結論: ①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函數y=f(x)在區間[4,5]上單調遞增;
③f(x)=2kf(x+2k)(k∈N+),對一切x∈[0,+∞)恒成立;
④函數y=f(x)﹣ln(x﹣1)有3個零點;
⑤若關于x的方程f(x)=m(m<0)有且只有兩個不同實根x1 , x2 , 則x1+x2=3.
則其中所有正確結論的序號是 . (請寫出全部正確結論的序號)
【答案】①④⑤
【解析】解:f(x)= 的圖象如圖所示:①∵f(x)的最大值為1,最小值為﹣1, ∴任取x1、x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2恒成立,故①正確;②函數在區間[4,5]上的單調性和[0,1]上的單調性相同,則函數y=f(x)在區間[4,5]上不單調;故②錯誤;③f(
)=2f(
+2)=4f(
+4)=6f(
+6)≠8f(
+8),故不正確;故③錯誤,④如圖所示,函數y=f(x)﹣ln(x﹣1)有3個零點;故④正確,⑤當1≤x≤2時,函數f(x)關于x=
對稱,若關于x的方程f(x)=m(m<0)有且只有兩個不同實根x1 , x2 ,
則 =
,則x1+x2=3成立,故⑤正確,
故答案為:①④⑤.
作出f(x)= 的圖象,分別利用函數的性質進行判斷即可.
科目:高中數學 來源: 題型:
【題目】橢圓=1(a>b>0)的左右焦點分別為F1(-c,0)、F2(c,0),過橢圓中心的弦PQ滿足丨PQ丨=2,∠PF2Q=90°,且△PF2Q的面積為1.
(1)求橢圓的方程;
(2)直線l不經過點A(0,1),且與橢圓交于M,N兩點,若以MN為直徑的圓經過點A,求證:直線l過定點,并求出該定點的坐標。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos2 +
sinωx﹣
(ω>0),x∈R,若f(x)在區間(π,2π)內沒有零點,則ω的取值范圍是( )
A.(0, ]
B.(0, ]∪[
,
)
C.(0, ]
D.(0, ]∪[
,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現隨機抽取部分學生的答卷,統計結果及對應的頻率分布直方圖如圖所示:
等級 | 不合格 | 合格 | ||
得分 | ||||
頻數 | 6 | 24 |
(Ⅰ)求,
,
的值;
(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談.現再從這10人這任選4人,記所選4人的量化總分為,求
的分布列及數學期望
;
(Ⅲ)某評估機構以指標(
,其中
表示
的方差)來評估該校安全教育活動的成效.若
,則認定教育活動是有效的;否則認定教育活動無效,應調整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應調整安全教育方案?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)(x∈R)滿足f(1)=1,且f(x)的導函數f′(x)≥ ,則f(x)<
+
的解集為( )
A.{x|x<1}
B.{x|x>1}
C.{x|x<﹣1}
D.{x|x>﹣1}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AB=BC,AD是BC邊上的高,AE是⊙O的直徑.
(1)求證:ACBC=ADAE;
(2)過點C作⊙O的切線交BA的延長線于點F,若AF=3,CF=9,求AC的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com