【題目】甲、乙、丙三人每人有一張游泳比賽的門票,已知每張票可以觀看指定的三場比賽中的任一場(三場比賽時間不沖突),甲乙二人約定他們會觀看同一場比賽并且他倆觀看每場比賽的可能性相同,又已知丙觀看每一場比賽的可能性也相同,且甲乙的選擇與丙的選擇互不影響.
(1)求三人觀看同一場比賽的概率;
(2)記觀看第一場比賽的人數是,求
的分布列和期望.
科目:高中數學 來源: 題型:
【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現了一種相互轉化,相互統一的和諧美.定義:能夠將圓的周長和面積同時等分成兩部分的函數稱為圓
的一個“太極函數”.下列有關說法中:
①對圓的所有非常數函數的太極函數中,一定不能為偶函數;
②函數是圓
的一個太極函數;
③存在圓,使得
是圓
的太極函數;
④直線所對應的函數一定是圓
的太極函數.
所有正確說法的序號是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
)將
的圖象向右平移兩個單位,得到函數
的圖象.
(1)求函數的解析式;
(2)若方程在
上有且僅有一個實根,求
的取值范圍;
(3)若函數與
的圖像關于直線
對稱,設
,已知
對任意的
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某單位的職工食堂中,食堂每天以元/個的價格從面包店購進面包,然后以
元/個的價格出售.如果當天賣不完,剩下的面包以
元/個的價格賣給飼料加工廠.根據以往統計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了
個面包,以
(單位:個,
)表示面包的需求量,
(單位:元)表示利潤.
(Ⅰ)求關于
的函數解析式;
(Ⅱ)求食堂每天面包需求量的中位數;
(Ⅲ)根據直方圖估計利潤不少于
元的概率;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于x的方程x2+ax+a﹣2=0.
(1)當該方程的一個根為1時,求a的值及該方程的另一根;
(2)求證:不論a取何實數,該方程都有兩個不相等的實數根.
(3)設該方程的兩個實數根分別為x1 , x2 , 若2(x1+x2)+x1x2+10=0,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】集合A={x|3≤x<9},B={x|1<x<7},C={x|x>m}.
(1)求A∪B;
(2)求(RA)∩B;
(3)若BC,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com