【題目】如圖,已知OPQ是半徑為1,圓心角為 的扇形,C是扇形弧上的動點,ABCD是扇形的內接矩形.記∠COP=α,則矩形ABCD的面積最大是 .
【答案】
【解析】解:如圖,
在Rt△OBC中,OB=cosα,BC=sinα,
在Rt△OAD中, =tan60°=
,
所以OA= DA=
BC=
sinα.
所以AB=OB﹣OA=cosα﹣ sinα.
設矩形ABCD的面積為S,
則S=ABBC=(cosα﹣ sinα)sinα=sinαcosα﹣
sin2α
= sin2α+
cos2α﹣
=
(
sin2α+
cos2α)﹣
= sin(2α+
)﹣
.
由于0<α< ,所以當2α+
=
,即α=
時,S最大=
﹣
=
.
因此,當α= 時,矩形ABCD的面積最大,最大面積為
.
所以答案是: .
【考點精析】本題主要考查了扇形面積公式的相關知識點,需要掌握若扇形的圓心角為,半徑為
,弧長為
,周長為
,面積為
,則
,
,
才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數,
,其中
是自然對數的底數.
(Ⅰ)判斷函數在
內零點的個數,并說明理由;
(Ⅱ),
,使得不等式
成立,試求實數
的取值范圍;
(Ⅲ)若,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數
(1)討論函數的單調性;
(2)若有兩個極值點
,記過點
的直線的斜率為
,問:是否存在實數
,使得
,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x﹣4.設圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x﹣1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是等差數列,若a9+3a11<0,a10a11<0,且數列{an}的前n項和Sn有最大值,那么Sn取得最小正值時n等于( )
A.20
B.17
C.19
D.21
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對應的邊分別為a,b,c,且(2a﹣c)cosB=bcosC.
(Ⅰ)求角B的大。
(Ⅱ)若cosA= ,a=2,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
,且曲線
的左焦點
在直線上.
(1)若直線與曲線
交于
兩點,求
的值;
(2)設曲線的內接矩形的周長為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的偶函數,且在區間[0,+∞)上單調遞增,若實數a滿足f(log4a)+f(lo a)≤2f(1),則實數a的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都是40%.現采用隨機模擬的方法估計該運動員三次投籃恰有一次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數作為一組,代表三次投籃的結果.經隨機模擬產生了如下20組隨機數:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.據此估計,該運動員三次投籃恰有一次命中的概率為( 。
A.0.25
B.0.2
C.0.35
D.0.4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com