【題目】在如圖所示的幾何體中,四邊形是菱形,
是矩形,平面
平面
,
,
,
,
為
的中點.
(1)求證: 平面
;
(2)在線段上是否存在點
,使二面角
的大小為
?若存在,求出
的長
,若不存在,請說明理由.
【答案】(1)證明見解析;(2)當時,二面角
的大小為
.
【解析】試題分析:(1)根據題意可連接,設
與
交于
,連接
,可證
,利用線面平行的判定定理即可得證;(2)先假設線段
上是否存在點
,滿足題意,根據題目中的垂直關系,利用三垂線定理作出二面角的平面角,通過解直角三角形即可求得
的值.
試題解析:(1)如圖:
連接,設
與
交于
,連接
.由已知,
,故四邊形
是平行四邊形,
是
的中點,又因為
是
的中點,所以
.
因為平面
平面
所以
平面
.
(2)假設在線段上存在點
,使二面角
的大小為
.
延長、
交于點
,過
做
于
,連接
.因為
是矩形,平面
平面
所以
平面
,又
平面
,所以
,
平面
所以
,
為二面角
的平面角. 由題意
.
在中,
,則
,
所以.
又在中,
,所以
.
所以在線段上存在點
,使二面角
的大小為
,此時
的長為
.
科目:高中數學 來源: 題型:
【題目】為了解學生身高情況,某校以的比例對全校1000名學生按性別進行分層抽樣調查,已知男女比例為
,測得男生身高情況的頻率分布直方圖(如圖所示):
(1)計算所抽取的男生人數,并估計男生身高的中位數(保留兩位小數);
(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在
之間的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在坐標原點,焦點在軸上的橢圓,離心率為
且過點
,過定點
的動直線與該橢圓相交于
、
兩點.
(1)若線段中點的橫坐標是
,求直線
的方程;
(2)在軸上是否存在點
,使
為常數?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有兩枚均勻的硬幣和一枚不均勻的硬幣,其中不均勻的硬幣拋擲后出現正面的概率為,小華先拋擲這三枚硬幣,然后小紅再拋擲這三枚硬幣.
(1)求小華拋得一個正面兩個反面且小紅拋得兩個正面一個反面的概率;
(2)若用表示小華拋得正面的個數,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,得曲線
的極坐標方程為
.
(1)化曲線的參數方程為普通方程,化曲線
的極坐標方程為直角坐標方程;
(2)直線(
為參數)過曲線
與
軸負半軸的交點,求與直線
平行且與曲線
相切的直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(
為自然對數的底數).
(1)若函數的圖象在
處的切線方程為
,求
,
的值;
(2)若時,函數
在
內是增函數,求
的取值范圍;
(3)當時,設函數
的圖象
與函數
的圖象
交于點
、
,過線段
的中點
作
軸的垂線分別交
、
于點
、
,問是否存在點
,使
在
處的切線與
在
處的切線平行?若存在,求出
的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地有10個著名景點,其中8 個為日游景點,2個為夜游景點.某旅行團要從這10個景點中選5個作為二日游的旅游地.行程安排為第一天上午、下午、晚上各一個景點,第二天上午、下午各一個景點.
(1)甲、乙兩個日游景點至少選1個的不同排法有多少種?
(2)甲、乙兩日游景點在同一天游玩的不同排法有多少種?
(3)甲、乙兩日游景點不同時被選,共有多少種不同排法?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com