精英家教網 > 高中數學 > 題目詳情
已知f(x)=(x≠a).
(1)若a=-2,試證f(x)在(-∞,-2)上單調遞增.
(2)若a>0且f(x)在(1,+∞)上單調遞減,求a的取值范圍.
(1)見解析   (2) (0,1]
(1)任設x1<x2<-2, (0,1]
則f(x1)-f(x2)=-=.
∵(x1+2)(x2+2)>0,x1-x2<0,
∴f(x1)<f(x2),
∴f(x)在(-∞,-2)上單調遞增.
(2)任設1<x1<x2,則
f(x1)-f(x2)=-
=.
∵a>0,x2-x1>0,
∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,∴a≤1.
綜上所述知a的取值范圍是(0,1].
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設函數的定義域是,對于任意的,有,且當時,.
(1)求的值;
(2)判斷函數的奇偶性;
(3)用函數單調性的定義證明函數為增函數;
(4)若恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

.函數為偶函數,且在單調遞增,則的解集為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數f(x)=則該函數是(  )
A.偶函數,且單調遞增B.偶函數,且單調遞減
C.奇函數,且單調遞增D.奇函數,且單調遞減

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知定義在R上的函數y=f(x)滿足下列三個條件:①對任意的x∈R都有f(x+2)=-f(x);②對于任意的0≤x1<x2≤2,都有f(x1)<f(x2);③y=f(x+2)的圖像關于y軸對稱.下列結論中,正確的是(  )
A.f(4.5)<f(6.5)<f(7)
B.f(4.5)<f(7)<f(6.5)
C.f(7)<f(4.5)<f(6.5)
D.f(7)<f(6.5)<f(4.5)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數g(x)=2x-,若f(x)=則函數f(x)在定義域內(  )
A.有最小值,但無最大值
B.有最大值,但無最小值
C.既有最大值,又有最小值
D.既無最大值,又無最小值

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數f(x)=若f(2-a2)>f(a),則實數a的取值范圍是(  )
A.(-∞,-1)∪(2,+∞)
B.(-1,2)
C.(-2,1)
D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某醫藥研究所開發一種新藥,在試驗藥效時發現:如果成人按規定劑量服用,那么服藥后每毫升血液中的含藥量y(微克)與時間x(小時)之間滿足y=其對應曲線(如圖所示)過點.
 
(1)試求藥量峰值(y的最大值)與達峰時間(y取最大值時對應的x值);
(2)如果每毫升血液中含藥量不少于1微克時治療疾病有效,那么成人按規定劑量服用該藥后一次能維持多長的有效時間(精確到0.01小時)?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知奇函數f(x)在定義域[-2,2]上單調遞減,求滿足f(1-m)+f(1-m2)<0的實數m的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视