【題目】已知直線是雙曲線
的一條漸近線,點
都在雙曲線
上,直線
與
軸相交于點
,設坐標原點為
.
(1)求雙曲線的方程,并求出點
的坐標(用
表示);
(2)設點關于
軸的對稱點為
,直線
與
軸相交于點
.問:在
軸上是否存在定點
,使得
?若存在,求出點
的坐標;若不存在,請說明理由.
(3)若過點的直線
與雙曲線
交于
兩點,且
,試求直線
的方程.
【答案】(1);
(2)存在定點
,其坐標為
或
(3)
【解析】
(1)求得雙曲線的漸近線方程,可得,由題意可得
,
,可得雙曲線的方程,求出直線
的方程,可令
,求得
的坐標;(2)求得對稱點
的坐標,直線
方程,令
,可得
的坐標,假設存在
,運用兩直線垂直的條件:斜率之積為
,結合
在雙曲線上,化簡整理,即可得到定點
;(3)設出直線
的方程,代入雙曲線的方程,運用韋達定理,由向量數量積的性質,可得向量
,
的數量積為0,化簡整理,解方程可得
的值,檢驗判別式大于0成立,進而得到直線
的方程.
解:(1)由已知,得,故雙曲線
的方程為
為直線AM的一個方向向量,
直線AM的方程為
它與
軸的交點為
(2)由條件,得且
為直線AN的一個方向向量,
故直線AN的方程為它與
軸的交點為
假設在軸上存在定點
,使得
,則
由及
得
故即存在定點
,其坐標為
或
滿足題設條件.
(3)由知,以
為鄰邊的平行四邊形的對角線的長相等,故此四邊形為矩形,從而
由已知,可設直線的方程為
并設
則由得
由及
得
且
(*)
由
得
故符合約束條件(*).
因此,所求直線的方程為
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點
,
與短軸的一個端點構成一個等邊三角形,且直線
與圓
相切.
(1)求橢圓的方程;
(2)已知過橢圓的左頂點
的兩條直線
,
分別交橢圓
于
,
兩點,且
,求證:直線
過定點,并求出定點坐標;
(3)在(2)的條件下求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海水稻就是耐鹽堿水稻,是一種介于野生稻和栽培稻之間的普遍生長在海邊灘涂地區的水稻,具有抗旱抗澇、抗病蟲害、抗倒伏抗鹽堿等特點.近年來,我國的海水稻研究取得了階段性成果,目前已開展了全國大范圍試種.某農業科學研究所分別抽取了試驗田中的海水稻以及對照田中的普通水稻各株,測量了它們的根系深度(單位:
),得到了如下的莖葉圖,其中兩豎線之間表示根系深度的十位數,兩邊分別是海水稻和普通水稻根系深度的個位數,則下列結論中不正確的是( )
A.海水稻根系深度的中位數是
B.普通水稻根系深度的眾數是
C.海水稻根系深度的平均數大于普通水稻根系深度的平均數
D.普通水稻根系深度的方差小于海水稻根系深度的方差
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(1)當0≤x≤200時,求函數v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,且經過點
,它的一個焦點與拋物線
的焦點重合.
(1)求橢圓的方程;
(2)斜率為的直線過點
,且與拋物線
交于
兩點,設點
,
的面積為
,求
的值;
(3)若直線過點
,且與橢圓
交于
兩點,點
關于
軸的對稱點為
,直線
的縱截距為
,證明:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了普及環保知識,增強學生的環保意識,在全校組織了一次有關環保知識的競賽,經過初賽、復賽,甲、乙兩個代表隊(每隊人)進入了決賽,規定每人回答一個問題,答對為本隊贏得
分,答錯得
分,假設甲隊中每人答對的概率均為
,乙隊中
人答對的概率分別為
,且各人回答正確與否相互之間沒有影響,用
表示乙隊的總得分.
(1)求的分布列;
(2)求甲、乙兩隊總得分之和等于分且甲隊獲勝的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三家企業產品的成本分別為10000,12000,15000,其成本構成如下圖所示,則關于這三家企業下列說法錯誤的是( )
A.成本最大的企業是丙企業B.費用支出最高的企業是丙企業
C.支付工資最少的企業是乙企業D.材料成本最高的企業是丙企業
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設和
是雙曲線
上的兩點,線段
的中點為
,直線
不經過坐標原點
.
(1)若直線和直線
的斜率都存在且分別為
和
,求證:
;
(2)若雙曲線的焦點分別為、
,點
的坐標為
,直線
的斜率為
,求由四點
、
、
、
所圍成四邊形
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,SA⊥底面ABCD,底面ABCD是平行四邊形,E是線段SD上一點.
(1)若E是SD的中點,求證:SB∥平面ACE;
(2)若SA=AB=AD=2,SC=2,且DE
DS,求二面角S﹣AC﹣E的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com