精英家教網 > 高中數學 > 題目詳情

【題目】在△ABC中,角A,B,C對的邊分別為a,b,c,且c=2,C=60°.
(1)求 的值;
(2)若a+b=ab,求△ABC的面積SABC

【答案】
(1)解:由正弦定理可設 ,

所以 ,

所以


(2)解:由余弦定理得c2=a2+b2﹣2abcosC,

即4=a2+b2﹣ab=(a+b)2﹣3ab,

又a+b=ab,所以(ab)2﹣3ab﹣4=0,

解得ab=4或ab=﹣1(舍去)

所以


【解析】(1)根據正弦定理求出 ,然后代入所求的式子即可;(2)由余弦定理求出ab=4,然后根據三角形的面積公式求出答案.
【考點精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關知識點,需要掌握正弦定理:;余弦定理:;;才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數).

(1)當時,求函數的單調區間;

(2)若, ,對任意, , 恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,200),[220.240),
[240,260),[260,280),[280,300)分組的頻率分布直方圖如圖.

(1)求直方圖中x的值;
(2)在月平均用電量為,[220,240),[240,260),[260,280)的三用戶中,用分層抽樣的方法抽取10居民,則月平均用電量在[220,240)的用戶中應抽取多少戶?
(3)求月平均用電量的中位數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)是定義在R上的不恒為零的函數,且對于任意實數x,y滿足:f(2)=2,f(xy)=xf(y)+yf(x),an= (n∈N*),bn= (n∈N*),考查下列結論:
①f(1)=1;②f(x)為奇函數;③數列{an}為等差數列;④數列{bn}為等比數列.
以上命題正確的是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,內角 , 的對邊分別為, , ,已知,

1的值;

2,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某蔬菜商店買進的土豆(噸)與出售天數(天)之間的關系如下表所示:

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(1)請根據上表數據在所給網格紙中繪制散點圖;

(2)請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程(其中保留2位有效數字);

3)根據(2)中的計算結果,若該蔬菜商店買進土豆40噸,則預計可以銷售多少天(計算結果保留整數)?

附: ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)在一個周期內的圖象如圖所示,則函數的解析式為 . 直線y= 與函數y=f(x)(x∈R)圖象的所有交點的坐標為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC的外接圓半徑R= ,角A,B,C的對邊分別是a,b,c,且 =
(1)求角B和邊長b;
(2)求SABC的最大值及取得最大值時的a,c的值,并判斷此時三角形的形狀.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果右邊程序執行后輸出的結果是132,那么在程序until后面的“條件”應為( )

A.i > 11
B.i ≥11
C.i ≤11
D.i<11

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视