【題目】若實數滿足不等式組
,則
的最大值為__.
【答案】
【解析】作出不等式組對應的平面區域如圖:
由,解得
,即B(6,﹣1),
由,解
,即C(﹣2,﹣1),
當x≥0時,z=2x+y,即y=﹣2x+z,x≥0,
當x<0時,z=﹣2x+y,即y=2x+z,x<0,
當x≥0時,平移直線y=﹣2x+z,(紅線),
當直線y=﹣2x+z經過點A(0,﹣1)時,
直線y=﹣2x+z的截距最小為z=﹣1,
當y=﹣2x+z經過點B(6,﹣1)時,
直線y=﹣2x+z的截距最大為z=11,此時﹣1≤z≤11.
當x<0時,平移直線y=2x+z,(藍線),
當直線y=2x+z經過點A(0,﹣1)時,直線y=2x+z的截距最小為z=﹣1,
當y=2x+z經過點C(﹣2,﹣1)時,
直線y=2x+z的截距最大為z=4﹣1=3,此時﹣1≤z≤3,
綜上﹣1≤z≤11,
故z=2|x|+y的取值范圍是[﹣1,11],
故z的最大值為11,
故答案為:11.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數方程為(
為參數),曲線C2的參數方程為
(
為參數).在以O為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=α 與C1,C2 各有一個交點.當 α=0時,這兩個交點間的距離為2,當 α=
時,這兩個交點重合.
(1) 求曲線C1,C2的直角坐標方程
(2) 設當 α=時,l與C1,C2的交點分別為A1,B1,當 α=-
時,l與C1,C2的交點分別為A2,B2,求四邊形A1A2B2B1的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,多面體ABCD﹣A1B1C1D1為正方體,則下面結論正確的是( )
A.A1B∥B1C
B.平面CB1D1⊥平面A1B1C1D1
C.平面CB1D1∥平面A1BD
D.異面直線AD與CB1所成的角為30°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
、
,離心率
,點
在橢圓
上.
(1)求橢圓的方程;
(2)設過點且不與坐標軸垂直的直線交橢圓
于
、
兩點,線段
的垂直平分線與
軸交于點
,求點
的橫坐標的取值范圍;
(3)在第(2)問的條件下,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知橢圓:
的焦距為
,離心率為
,其右焦點為
,過點
作直線交橢圓于另一點
.
(1)若,求
外接圓的方程;
(2)若過點的直線與橢圓
相交于兩點
、
,設
為
上一點,且滿足
(
為坐標原點),當
時,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某校高一年級學生中隨機抽取了20名學生,將他們的數學檢測成績(分)分成六段(滿分100分,成績均為不低于40分的整數):,
,...,
后,得到如圖所示的頻率分布直方圖.
(Ⅰ)求圖中實數的值;
(Ⅱ)若該校高一年級共有學生600名,試根據以上數據,估計該校高一年級數學檢測成績不低于80分的人數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com