如圖,已知圓E ,點
,P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(1)求動點Q的軌跡的方程;
(2)點,
,點G是軌跡
上的一個動點,直線AG與直線
相交于點D,試判斷以線段BD為直徑的圓與直線GF的位置關系,并證明你的結論.
(1)點Q的軌跡的方程為為
.(2)以線段BD為直徑的圓與直線GF相切.
解析試題分析:(1)連結QF,由于線段的垂直平分線上的點到線段兩端點的距離相等,所以|QE|+|QF|=|QE|+|QP|=4,根據橢圓的定義知,動點Q的軌跡
是以E,F為焦點,長軸長為4的橢圓.由此便可得其方程;(2)直線與圓的位置關系一般通過比較圓心到直線的距離與圓的半徑的大小關系來確定. 由題意,設直線AG的方程為
,則點D坐標為
,由此可得圓心和半徑.下面用k表示點G的坐標,求出直線GF方程為
,進而求到圓心到直線GF的距離便可知道以BD為直徑的圓與直線GF的位置關系.
(1)連結QF,根據題意,|QP|=|QF|,
則|QE|+|QF|=|QE|+|QP|=4,
故Q的軌跡是以E,F為焦點,長軸長為4的橢圓. .2分
設其方程為,可知
,
,則
, ..3分
所以點Q的軌跡的方程為為
. 4分
(2)以線段BD為直徑的圓與直線GF相切. 5分
由題意,設直線AG的方程為,則點D坐標為
,BD的中點H的坐標為
.
聯立方程組消去y得
,
設,則
,
所以,
, 7分
當時,點G的坐標為
,點D的坐標為
.
直線GF⊥x軸,此時以BD為直徑的圓與直線GF相切. 9分
當時,則直線GF的斜率為
,則直線GF方程為
,
點H到直線GF的距離,又
,
所以圓心H到直線GF的距離,此時,以BD為直徑的圓與直線GF相切.
綜上所述,以線段BD為直徑的圓與直線GF相切. 13分
考點:1、橢圓的方程;2、直線與橢圓的關系;3、最值問題.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,原點為
,拋物線
的方程為
,線段
是拋物線
的一條動弦.
(1)求拋物線的準線方程和焦點坐標
;
(2)若,求證:直線
恒過定點;
(3)當時,設圓
,若存在且僅存在兩條動弦
,滿足直線
與圓
相切,求半徑
的取值范圍?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,已知點A(0,-1),B點在直線y = -3上,M點滿足,
,M點的軌跡為曲線C。
(1)求C的方程;
(2)P為C上的動點,l為C在P點處得切線,求O點到l距離的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓C1:=1(a>b>0)的左、右焦點分別為為
,
恰是拋物線C2:
的焦點,點M為C1與C2在第一象限的交點,且|MF2|=
.
(1)求C1的方程;
(2)平面上的點N滿足,直線l∥MN,且與C1交于A,B兩點,若
,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
長方形中,
,
.以
的中點
為坐標原點,建立如圖所示的直角坐標系.
(1) 求以、
為焦點,且過
、
兩點的橢圓的標準方程;
(2) 過點的直線
交(1)中橢圓于
兩點,是否存在直線
,使得以線段
為直徑的圓恰好過坐標原點?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,設拋物線:
的焦點為
,準線為
,過準線
上一點
且斜率為
的直線
交拋物線
于
,
兩點,線段
的中點為
,直線
交拋物線
于
,
兩點.
(1)求拋物線的方程及
的取值范圍;
(2)是否存在值,使點
是線段
的中點?若存在,求出
值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知,
,
,
分別是橢圓
的四個頂點,△
是一個邊長為2的等邊三角形,其外接圓為圓
.
(1)求橢圓及圓
的方程;
(2)若點是圓
劣弧
上一動點(點
異于端點
,
),直線
分別交線段
,橢圓
于點
,
,直線
與
交于點
.
(。┣的最大值;
(ⅱ)試問:..,
兩點的橫坐標之和是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓C1:的右焦點為F,P為橢圓上的一個動點.
(1)求線段PF的中點M的軌跡C2的方程;
(2)過點F的直線l與橢圓C1相交于點A、D,與曲線C2順次相交于點B、C,當時,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com