精英家教網 > 高中數學 > 題目詳情

【題目】已知冪函數滿足

1)求函數的解析式;

2)若函數,是否存在實數使得的最小值為0?若存在,求出的值;若不存在,說明理由;

3)若函數,是否存在實數,使函數上的值域為?若存在,求出實數的取值范圍;若不存在,說明理由.

【答案】1;(2)存在使得的最小值為0;(3

【解析】試題分析:1為冪函數可得,解得,經驗證。2,則,設,則將問題轉化為函數上的最小值是否為0的問題。根據對稱軸與區間的關系求解,可得滿足題意。3由題意得,且在定義域內為單調遞減函數,若存在實數a,b滿足題意,則可得,由②-①消去n得,從而,將③代入②得,再令,由,所以將問題轉化為求

上的取值范圍,根據二次函數的知識可得。

試題解析

(1)∵是冪函數,

,

解得

時, ,不滿足,

時, ,滿足

。

(2)令,則

,

①當,即時,由題意得

,

解得;

②當,即時,由題意得

,

解得(舍去);

③當,即時,由題意得

,

解得(舍去)

綜上存在使得的最小值為0。

(3)由題意得,

在定義域內為單調遞減函數;

若存在實數,使函數上的值域為,

,

由②-①,得

,

將③代入②得,

,

,故在區間上單調遞減,

。

∴存在實數,使函數上的值域為且實數的取值范圍為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, 底面, , 為棱中點.

(1)求證: 平面;

(2)若中點, ,試確定的值,使二面角的余弦值為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來空氣質量逐步惡化,霧霾天氣現象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關,在市第一人民醫院隨機對入院50人進行了問卷調查,得到了如表的列聯表:

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為.

(1)請將上面的列聯表補充完整;

(2)是否有99%的把握認為患心肺疾病與性別有關?說明你的理由.

參考格式: ,其中.

下面的臨界值僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知2件次品和3件正品放在一起,現需要通過檢測將其區分,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結果.

1求第一次檢測出的是次品且第二次檢測出的是正品的概率;

2已知每檢測一件產品需要費用100元,設X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求X的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點, 軸的正半軸為極軸,與直角坐標系取相同的單位長度建立極坐標系,曲線的極坐標方程為.

(1)化曲線的方程為普通方程,并說明它們分別表示什么曲線;

(2)設曲線軸的一個交點的坐標為,經過點作斜率為1的直線, 交曲線兩點,求線段的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知指數函數

(1)函數過定點,求的值;

(2)當時,求函數的最小值;

(3)是否存在實數,使得(2)中關于的函數的定義域為時,值域為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設拋物線的頂點在坐標原點,焦點軸上,過點的直線交拋物線于兩點,線段的長度為8, 的中點到軸的距離為3.

(1)求拋物線的標準方程;

(2)設直線軸上的截距為6,且拋物線交于兩點,連結并延長交拋物線的準線于點,當直線恰與拋物線相切時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 的定義域為 ,若對于任意的 , ,都有 ,且當 時,有

1)證明: 為奇函數;

2)判斷 上的單調性,并證明;

3)設 ,若 )對 恒成立,求實數 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩種坐標系中的長度單位相同,圓的直角坐標方程為,直線的參數方程為為參數),射線的極坐標方程為

1)求圓和直線的極坐標方程;

(2)已知射線與圓的交點為,與直線的交點為,求線段的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视