【題目】為了解七班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:
喜愛打籃球 | 不喜愛打籃球 | 合 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為.
(1)請將上面的列聯表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過0.005的前提下認為喜愛打籃球與性別有關?說明你的理由;
(3)現從女生中抽取2人進一步調查,設其中喜愛打籃球的女生人數為,求
的分布列與期望.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05[ | 0.025 | 0.01 | 0.005 | 0.001 | |
2.072 | 2.70 | 3.841 | 5.024 | 6.635 | 7.879 | 10.82 |
(參考公式:,其中
)
【答案】(1)見解析(2)能(3)
【解析】
解:(1) 列聯表補充如下:-
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
(2)∵
∴在犯錯誤的概率不超過0.005的前提下,認為喜愛打籃球與性別有關.
(3)喜愛打籃球的女生人數的可能取值為
.
其概率分別為,
,
故的分布列為:
的期望值為:
本題是一個統計綜合題,包含獨立性檢驗、離散型隨機變量的期望與方差和概率,本題通過創設情境激發學生學習數學的情感,幫助培養其嚴謹治學的態度.
(1)根據在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率,做出喜愛打籃球的人數,進而做出男生的人數,填好表格.
(2)根據所給的公式,代入數據求出臨界值,把求得的結果同臨界值表進行比較,看出有多大的把握說明打籃球和性別有關系.
(3)喜愛打籃球的女生人數ξ的可能取值為0,1,2,通過列舉得到事件數,分別計算出它們的概率,最后利用列出分布列,求出期望即可.
解:(1) 列聯表補充如下:----------------------------------------3分
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
(2)∵------------------------6分
∴在犯錯誤的概率不超過0.005的前提下,認為喜愛打籃球與性別有關.---------------------7分
(3)喜愛打籃球的女生人數的可能取值為
.-------------------------9分
其概率分別為,
,
--------------------------12分
故的分布列為:
--------------------------13分
的期望值為:
---------------------14分
科目:高中數學 來源: 題型:
【題目】已知為定義在實數集
上的函數,把方程
稱為函數
的特征方程,特征方程的兩個實根
、
(
),稱為
的特征根.
(1)討論函數的奇偶性,并說明理由;
(2)已知為給定實數,求
的表達式;
(3)把函數,
的最大值記作
,最小值記作
,研究函數
,
的單調性,令
,若
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中a為實數.
(1)當a=-1時,求函數y=f(x)的零點;
(2)若f(x)在(-2,2)上為增函數,求實數a的取值范圍;
(3)對于給定的實數a,若存在兩個不相等的實數根,
,(
<
且
≠0)使得f(
)=f(
),求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|2x-1|+|x-2a|.
(1)當a=1時,求f(x)≤3的解集;
(2)當x∈[1,2]時,f(x)≤3恒成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com