精英家教網 > 高中數學 > 題目詳情
函數f(x)對任意的實數a,b都滿足:f(a+b)=f(a)+f(b),且f(2)=1,則f(-2)=______.
由題意知,f(0)=f(0)+f(0),∴f(0)=0,
∵f(0)=f(x-x)=f(x)+f(-x)=0∴f(-x)=-f(x)
∴f(x)為奇函數.
∴f(-2)=-f(2)=-1.
故答案為:-1.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)對任意的實數x,y都有f(x+y)=f(x)+f(y)+2y(x+y)+1且f(1)=1.
(1)若x∈N*,試求f(x)的解析式;
(2)若x∈N*,且x≥2時,不等式f(x)≥(a+7)x-(a+10)恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如果函數f(x)對任意的實數x,存在常數M,使得不等式|f(x)|≤M|x|恒成立,那么就稱函數f(x)為有界泛函,下面四個函數:
①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④f(x)=
xx2+x+1

其中屬于有界泛函的是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如果函數f(x)對任意的實數x,存在常數M,使得不等式|f(x)|≤M|x|恒成立,那么就稱函數f(x)為有界泛函數,下面四個函數:①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④f(x)=
x
x2+x+1

其中屬于有界泛函數的是( 。
A、①②B、①③C、③④D、②④

查看答案和解析>>

科目:高中數學 來源: 題型:

已知奇函數f(x)對任意的正實數x1,x2(x1≠x2),恒有(x1-x2)(f(x1)-f(x2))>0,則一定正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)對任意的實數x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,則稱函數f(x)是區間D上的“平緩函數”,
(1)判斷g(x)=sinx和h(x)=x2-x是不是實數集R上的“平緩函數”,并說明理由;
(2)若數列{xn}對所有的正整數n都有 |xn+1-xn|≤
1
(2n+1)2
,設yn=sinxn,求證:|yn+1-y1|<
1
4

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视