【題目】已知全集為R,設集合A={x|(x+2)(x-5)≤0},,C={x|a+1≤x≤2a-1}.
(1)求A∩B,(CRA)∪B;
(2)若C(A∩B),求實數a的取值范圍.
【答案】(1) A∩B={x|3<x≤5},(CRA)∪B={x|x<-2或x>3};(2) a<2或2<a≤3.
【解析】
(1)化簡集合A、B,根據交集、補集和并集的定義計算即可;
(2)當C(A∩B)時,討論C=和C≠時,分別求出對應a的取值范圍.
(1)集合A={x|(x+2)(x-5)≤0}={x|-2≤x≤5},
={x|
-2≥0}={x|
≤0}={x|3<x≤6},
所以A∩B={x|3<x≤5},
CRA={x|x<-2或x>5},
則(CRA)∪B={x|x<-2或x>3};
(2)若C(A∩B),則
當C=時,a+1>2a-1,解得a<2;
當C≠時,由,解得2<a≤3;
綜上知,實數a的取值范圍是a<2或2<a≤3.
科目:高中數學 來源: 題型:
【題目】某校早上8:00開始上課,假設該校學生小張與小王都在早上7:30--7:50之間到校,且每人在該時間段的任何時刻到校是等可能的,求小張比小王至少早5分鐘到校的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉軸旋轉,有下列結論:
①當直線AB與a成60°角時,AB與b成30°角;
②當直線AB與a成60°角時,AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最大值為60°.
其中正確的是________.(填寫所有正確結論的編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市每年春節前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環保研究所對近年春節前后每天的空氣污染情況調查研究后發現,每天空氣污染的指數.f(t),隨時刻t(時)變化的規律滿足表達式,其中a為空氣治理調節參數,且a∈(0,1).
(1)令,求x的取值范圍;
(2)若規定每天中f(t)的最大值作為當天的空氣污染指數,要使該市每天的空氣污染指數不超過5,試求調節參數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的右頂點、上頂點分別為
、
,坐標原點到直線
的距離為
,且
,則橢圓
的方程為( )
A. B.
C.
D.
【答案】D
【解析】
寫出直線的方程,利用原點到直線
的距離,以及
列方程組,解方程組求得
的值,進而求得橢圓的方程.
橢圓右頂點坐標為,上頂點坐標為
,故直線
的方程為
,即
,依題意原點到直線的距離為
,且
,由此解得
,故橢圓的方程為
,故選D.
【點睛】
本小題主要考查過兩點的直線方程,考查點到直線的距離公式,考查橢圓標準方程的求法,考查了方程的思想.屬于中檔題.
【題型】單選題
【結束】
11
【題目】若實數,
滿足
,則
的最小值是( )
A. 0 B. C. -6 D. -3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:①函數;
②向量,
,且
,
;
③函數的圖象經過點
請在上述三個條件中任選一個,補充在下面問題中,并解答.
已知_________________,且函數的圖象相鄰兩條對稱軸之間的距離為
.
(1)若,且
,求
的值;
(2)求函數在
上的單調遞減區間.
注:如果選擇多個條件分別解答,按第一個解答計分.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com