【題目】已知橢圓:
的右頂點、上頂點分別為
、
,坐標原點到直線
的距離為
,且
,則橢圓
的方程為( )
A. B.
C.
D.
【答案】D
【解析】
寫出直線的方程,利用原點到直線
的距離,以及
列方程組,解方程組求得
的值,進而求得橢圓的方程.
橢圓右頂點坐標為,上頂點坐標為
,故直線
的方程為
,即
,依題意原點到直線的距離為
,且
,由此解得
,故橢圓的方程為
,故選D.
【點睛】
本小題主要考查過兩點的直線方程,考查點到直線的距離公式,考查橢圓標準方程的求法,考查了方程的思想.屬于中檔題.
【題型】單選題
【結束】
11
【題目】若實數,
滿足
,則
的最小值是( )
A. 0 B. C. -6 D. -3
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,AB⊥AC,若AD⊥BC,則AB2=BD·BC;類似地有命題:在三棱錐A-BCD中,AD⊥平面ABC,若A點在平面BCD內的射影為M,則有S=S△BCM·S△BCD.上述命題是 ( )
A. 真命題
B. 增加條件“AB⊥AC”才是真命題
C. 增加條件“M為△BCD的垂心”才是真命題
D. 增加條件“三棱錐A-BCD是正三棱錐”才是真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知全集為R,設集合A={x|(x+2)(x-5)≤0},,C={x|a+1≤x≤2a-1}.
(1)求A∩B,(CRA)∪B;
(2)若C(A∩B),求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,圓
。
(1)若點在圓
內,求
的取值范圍;
(2)若過點的圓
的切線只有一條,求切線的方程;
(3)當時,過點
的直線
被圓
截得的弦長為
,求直線
的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,等腰梯形中,
,
于點
,
,且
.沿
把
折起到
的位置,使
.
()求證:
平面
.
()求三棱柱
的體積.
()線段
上是否存在點
,使得
平面
.若存在,指出點
的位置并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別是雙曲線
的左、右焦點,過點
作垂直與
軸的直線交雙曲線于
,
兩點,若
為銳角三角形,則雙曲線的離心率的取值范圍是_______.
【答案】
【解析】
根據雙曲線的通徑求得點的坐標,將三角形
為銳角三角形,轉化為
,即
,將表達式轉化為含有離心率的不等式,解不等式求得離心率的取值范圍.
根據雙曲線的通徑可知,由于三角形
為銳角三角形,結合雙曲線的對稱性可知
,故
,即
,即
,解得
,故離心率的取值范圍是
.
【點睛】
本小題主要考查雙曲線的離心率的取值范圍的求法,考查雙曲線的通徑,考查雙曲線的對稱性,考查化歸與轉化的數學思想方法,屬于中檔題.本小題的主要突破口在將三角形為銳角三角形,轉化為
,利用
列不等式,再將不等式轉化為只含離心率的表達式,解不等式求得雙曲線離心率的取值范圍.
【題型】填空題
【結束】
17
【題目】已知命題:方程
有兩個不相等的實數根;命題
:不等式
的解集為
.若
或
為真,
為假,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,正四棱錐中,
為底面正方形的中心,側棱
與底面
所成的角的正切值為
.
(1)求側面與底面
所成的二面角的大。
(2)若是
的中點,求異面直線
與
所成角的正切值;
(3)問在棱上是否存在一點
,使
⊥側面
,若存在,試確定點
的位置;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com