【題目】已知點,圓
。
(1)若點在圓
內,求
的取值范圍;
(2)若過點的圓
的切線只有一條,求切線的方程;
(3)當時,過點
的直線
被圓
截得的弦長為
,求直線
的方程。
科目:高中數學 來源: 題型:
【題目】公交車的數量太多容易造成資源浪費,太少又難以滿足乘客的需求,為了合理布置車輛,公交公司在2路車的乘客中隨機調查了50名乘客,經整理,他們候車時間(單位:)的莖葉圖如下:
(Ⅰ)將候車時間分為八組,作出相應的頻率分布直方圖;
(Ⅱ)若公交公司將2路車發車時間調整為每隔15發一趟車,那么上述樣本點將發生變化(例如候車時間為9
的不變,候車時間為17
的變為2
),現從2路車的乘客中任取5人,設其中候車時間不超過10
的乘客人數為
,求
的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知M(x1,y1)是橢圓=1(a>b>0)上任意一點,F為橢圓的右焦點.
(1)若橢圓的離心率為e,試用e,a,x1表示|MF|,并求|MF|的最值;
(2)已知直線m與圓x2+y2=b2相切,并與橢圓交于A、B兩點,且直線m與圓的切點Q在y軸右側,若a=4,求△ABF的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下給出五個命題,其中真命題的序號為______
①函數在區間
上存在一個零點,則
的取值范圍是
或
;
②“任意菱形的對角線一定相等”的否定是“菱形的對角線一定不相等”;
③,
;
④若,則
;
⑤“”是“
成等比數列”的充分不必要條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的右頂點、上頂點分別為
、
,坐標原點到直線
的距離為
,且
,則橢圓
的方程為( )
A. B.
C.
D.
【答案】D
【解析】
寫出直線的方程,利用原點到直線
的距離,以及
列方程組,解方程組求得
的值,進而求得橢圓的方程.
橢圓右頂點坐標為,上頂點坐標為
,故直線
的方程為
,即
,依題意原點到直線的距離為
,且
,由此解得
,故橢圓的方程為
,故選D.
【點睛】
本小題主要考查過兩點的直線方程,考查點到直線的距離公式,考查橢圓標準方程的求法,考查了方程的思想.屬于中檔題.
【題型】單選題
【結束】
11
【題目】若實數,
滿足
,則
的最小值是( )
A. 0 B. C. -6 D. -3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為研究晝夜溫差大小與某疾病的患病人數之間的關系,經查詢得到今年上半年每月15號的晝夜溫差情況與患者的人數如表:
日期 | 1月15日 | 2月15日 | 3月15日 | 4月15日 | 5月15日 | 6月15日 |
晝夜溫差 | 10 | 11 | 10 | 10 | 9 | 7 |
患者人數 | 21 | 26 | 20 | 18 | 16 | 8 |
研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.
若選取的是1月與6月的兩組數據,請根據2至5月份的數據,求出y關于x的線性回歸方程
;
若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問
中所得線性回歸方程是否理想?
參考公式:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓,點
是圓
上任意一點,線段
的垂直平分線和半徑
相交于
.
(1)求動點的軌跡
的方程;
(2)已知是軌跡
的三個動點,點
在一象限,
與
關于原點對稱,且
,問
的面積是否存在最小值?若存在,求出此最小值及相應直線
的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com