【題目】已知函數 ,其中a,b,c∈R.
(Ⅰ)若a=b=1,求函數f(x)的單調區間;
(Ⅱ)若a=0,且當x≥0時,f(x)≥1總成立,求實數b的取值范圍;
(Ⅲ)若a>0,b=0,若f(x)存在兩個極值點x1 , x2 , 求證;f(x1)+f(x2)<e.
【答案】解:(Ⅰ) ,
f'(x)>0x>1或x<0,f'(x)<00<x<1,
∴f(x)增區間為(﹣∞,0),(1,+∞),減區間為(0,1).
(Ⅱ) 在[0,+∞)恒成立b≥0
當b≥0時,f(x)≥1ex﹣bx﹣1≥0.設g(x)=ex﹣bx﹣1,g'(x)=ex﹣b
①當0≤b≤1時,g'(x)≥0g(x)在[0,+∞)單調遞增,g(x)≥g(0)=0成立
②當b>1時,g'(x)=0x=lnb,當x∈(0,lnb)時,
g'(x)<0g(x)在(0,lnb)單調遞減,g(x)<g(0)=0,不成立
綜上,0≤b≤1
(Ⅲ)
有條件知x1 , x2為ax2﹣2ax+1=0兩根, ,
且 ,
由 成立,
作差得: ,
得 ∴f(x1)+f(x2)<e….12
或由x1+x2=2, ,(可不妨設0<x1<1)
設 (0<x<1),
在(0,1)單調遞增,
h(x)<h(1)=e,
∴f(x1)+f(x2)<e成立.
【解析】(Ⅰ)求出函數的導數,解關于導函數的不等式,求出函數的單調區間即可;(Ⅱ)問題轉化為bx+1≥0在[0,+∞)恒成立,通過討論b的范圍集合函數的單調性從而求出b的范圍即可;(Ⅲ)求出函數的導數,構造新的函數,根據函數的單調性證明即可.
【考點精析】本題主要考查了利用導數研究函數的單調性的相關知識點,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}中公差d≠0,有a1+a4=14,且a1,a2,a7成等比數列.
(Ⅰ)求{an}的通項公式an與前n項和公式Sn;
(Ⅱ)令bn= (k<0),若{bn}是等差數列,求數列{
}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設甲、乙、丙三個乒乓球協會的運動員人數分別為27,9,18,先采用分層抽樣的方法從這三個協會中抽取6名運動員參加比賽.
(I)求應從這三個協會中分別抽取的運動員人數;
(II)將抽取的6名運動員進行編號,編號分別為,從這6名運動員中隨機抽取2名參加雙打比賽.
(i)用所給編號列出所有可能的結果;
(ii)設A為事件“編號為的兩名運動員至少有一人被抽到”,求事件A發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)設不等式2x-1>m(x2-1)對滿足|m|≤2的一切實數m的取值都成立,求x的取值范圍;
(2)是否存在m使得不等式2x-1>m(x2-1)對滿足|x|≤2的一切實數x的取值都成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知坐標平面上點與兩個定點
,
的距離之比等于5.
(1)求點的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為,過點
的直線
被
所截得的線段的長為8,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣a|﹣2.
(Ⅰ)若a=1,求不等式f(x)+|2x﹣3|>0的解集;
(Ⅱ)若關于x的不等式f(x)<|x﹣3|恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有關部門要了解甲型H1N1流感預防知識在學校的普及情況,命制了一份有10道題的問卷到各個學校做問卷調查。某中學A,B兩個班各被隨機抽取5名學生接受問卷調查,A班5名學生得分分別為;5, 8, 9, 9, 9:B班5名學生的得分分別為;6, 7, 8, 9, 10。
(1)請你分析A,B兩個班中哪個班的問卷得分要穩定些;
(2)如果把B班5名學生的得分看成一個總體,并用簡單隨機抽樣方法從中抽取容量為2的樣本,求樣本平均數與總體平均數之差的絕對值不小于1的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(sinx,﹣1),
=(
cosx,﹣
),函數f(x)=(
)
﹣2.
(Ⅰ)求函數f(x)的最小正周期T;
(Ⅱ)已知a,b,c分別為△ABC內角A,B,C的對邊,其中A為銳角,a=2 ,c=4,且f(A)=1,求A,b和△ABC的面積S.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com