精英家教網 > 高中數學 > 題目詳情

某化工企業2012年底投入100萬元購入一套污水處理設備.該設備每年的運轉費用是0.5萬元,此外每年都要花費一定的維護費,第一年的維護費為2萬元,由于設備老化,以后每年的維護費都比上一年增加2萬元.設該企業使用該設備x年的年平均污水處理費用為y(單元:萬元).
(1)用x表示y;
(2)當該企業的年平均污水處理費用最低時,企業需重新更換新的污水處理設備.求該企業幾年后需要重新更換新的污水處理設備.

(1)  y=x++1.5(x∈N*)      (2)  10年后

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

遼寧號航母紀念章從2012年10月5日起開始上市.通過市場調查,得到該紀念章每1枚的市場價 (單位:元)與上市時間(單位:天)的數據如下:

上市時間
 
4
 
10
 
36
 
市場價
 
90
 
51
 
90
 
(1)根據上表數據結合散點圖,從下列函數中選取一個恰當的函數描述遼寧號航母紀念章的市場價與上市時間的變化關系并說明理由:①;②;③
(2)利用你選取的函數,求遼寧號航母紀念章市場價最低時的上市天數及最低的價格.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=loga(3-ax).
(1)當x∈[0,2]時,函數f(x)恒有意義,求實數a的取值范圍.
(2)是否存在這樣的實數a,使得函數f(x)在區間[1,2]上為減函數,并且最大值為1?如果存在,試求出a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=4x+m·2x+1有且僅有一個零點,求m的取值范圍,并求出該零點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=2|x-2|+ax(x∈R)有最小值.
(1)求實數a的取值范圍.
(2)設g(x)為定義在R上的奇函數,且當x<0時,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,P1(x1,y1),P2(x2y2),…,Pn(xn,yn)(0<y1y2<…<yn)是曲線Cy2=3x(y≥0)上的n個點,點Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標原點).
 
(1)寫出a1,a2a3
(2)求出點An(an,0)(n∈N*)的橫坐標an關于n的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數是奇函數,(其中)
(1)求實數m的值;
(2)在時,討論函數f(x)的增減性;
(3)當x時,f(x)的值域是(1,),求n與a的值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某單位擬建一個扇環面形狀的花壇(如圖所示),該扇環面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設計要求扇環面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米,圓心角為(弧度).

(1)求關于的函數關系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求關于的函數關系式,并求出為何值時,取得最大值?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設a是實數,討論關于x的方程lg(x-1)+lg(3-x)=lg(a-x)的實數解的個數.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视