【題目】有兩位射擊運動員在一次射擊測試中各射靶7次,每次命中的環數如下:
甲 7 8 10 9 8 8 6 乙 9 10 7 8 7 7 8
則下列判斷正確的是( )
A. 甲射擊的平均成績比乙好 B. 甲射擊的成績的眾數小于乙射擊的成績的眾數
C. 乙射擊的平均成績比甲好 D. 甲射擊的成績的極差大于乙射擊的成績的極差
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率低于,現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果,經隨機模擬產生了如下20組隨機數:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,該運動員三次投籃恰有兩次命中的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列結論中:
①定義在R上的函數f(x)在區間(-∞,0]上是增函數,在區間[0,+∞)上也是增函數,則函數f(x)在R上是增函數;②若f(2)=f(-2),則函數f(x)不是奇函數;③函數y=x-0.5是(0,1)上的減函數;④對應法則和值域相同的函數的定義域也相同;⑤若x0是二次函數y=f(x)的零點,且m<x0<n,那么f(m)f(n)<0一定成立.
寫出上述所有正確結論的序號:_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖.
(1)求證:AB⊥CD;
(2)若M為AD中點,求直線AD與平面MBC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在 R 上的奇函數 f (x) ,設其導函數為 f x ,當 x ,0時,恒有xf x f x 0 ,令 F x xf x,則滿足 F(3) F 2x 1 的實數 x 的取值范圍是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:x2+2y2=4,
(1)求橢圓C的離心率
(2)設O為原點,若點A在橢圓C上,點B在直線y=2上,且OA⊥OB,求直線AB與圓x2+y2=2的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲與乙午覺醒來后,發現自己的手表因故停止轉動,于是他們想借助收音機,利用電臺整點報時確認時間.
(1)求甲等待的時間不多于10分鐘的概率;
(2)求甲比乙多等待10分鐘以上的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面上, ⊥
,|
|=|
|=1,
=
+
.若|
|<
,則|
|的取值范圍是( )
A.(0, ]
B.( ,
]
C.( ,
]
D.( ,
]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com