精英家教網 > 高中數學 > 題目詳情
已知函數
(Ⅰ)若,求函數的單調區間;
(Ⅱ)若函數的圖象在點(2,f(2))處的切線的傾斜角為,對于任意的,函數 的導函數)在區間上總不是單調函數,求的取值范圍;  
(Ⅲ)求證:
(Ⅰ)的單調增區間為,減區間為
(Ⅱ)    (Ⅲ)先證.

試題分析:(Ⅰ)當時,.令;令,∴的單調增區間為,減區間為 .
(Ⅱ) ∵,
 ,,∴ 
在區間上總不是單調函數,且  
由題意知:對于任意的,恒成立,
所以,,∴.  故的取值范圍為
(Ⅲ)證明如下: 由(Ⅰ)可知
,即,
對一切成立.
,則有,∴.    
.
點評:本題考查利用函數的導數來求函數的單調區間,已知函數曲線上一點求曲線的切線方程即對函數導數的幾何意義的考查,考查求導公式的掌握情況.含參數的數學問題的處理,構造函數求解證明不等式問題.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數。
(1)當時,求函數的單調區間;
(2)求證:當時,對所有的都有成立.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知
(Ⅰ)求的單調遞增區間;
(Ⅱ)若函數上只有一個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(I)若處取得極值,
①求、的值;②存在,使得不等式成立,求的最小值;
(II)當時,若上是單調函數,求的取值范圍.(參考數據

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.若,求的值;當時,求的單調區間.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知實數a滿足1<a≤2,設函數f (x)=x3x2+a x.
(Ⅰ) 當a=2時,求f (x)的極小值;
(Ⅱ) 若函數g(x)=4x3+3bx2-6(b+2)x  (b∈R) 的極小值點與f (x)的極小值點相同,
求證:g(x)的極大值小于或等于10.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知在R上可導,且,則的大小關系是(     )
A.B.
C.D.不確定

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

題文已知函數.
(1)求函數的單調遞減區間;
(2)若不等式對一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

本小題滿分12分)設M是由滿足下列條件的函數f (x)構成的集合:①方程f (x)一x=0有實根;②函數的導數滿足0<<1.
(1)若函數f(x)為集合M中的任意一個元素,證明:方程f(x)一x=0只有一個實根;
(2)判斷函數是否是集合M中的元素,并說明理由;
(3)設函數f(x)為集合M中的任意一個元素,對于定義域中任意,
證明:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视