【題目】某射擊運動員進行射擊訓練,前三次射擊在靶上的著彈點剛好是邊長為
的等邊三角形的三個頂點.
(Ⅰ)第四次射擊時,該運動員瞄準區域射擊(不會打到
外),則此次射擊的著彈點距
的距離都超過
的概率為多少?(彈孔大小忽略不計)
(Ⅱ) 該運動員前三次射擊的成績(環數)都在區間內,調整一下后,又連打三槍,其成績(環數)都在區間
內.現從這
次射擊成績中隨機抽取兩次射擊的成績(記為
和
)進行技術分析.求事件“
”的概率.
科目:高中數學 來源: 題型:
【題目】下列命題中,真命題是( )
A. 設,則
為實數的充要條件是
為共軛復數;
B. “直線與曲線C相切”是“直線
與曲線C只有一個公共點”的充分不必要條件;
C. “若兩直線,則它們的斜率之積等于
”的逆命題;
D. 是R上的可導函數,“若
是
的極值點,則
”的否命題.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】德國數學家科拉茨1937年提出一個著名的猜想:任給一個正整數,如果
是偶數,就將它減半(即
);如果
是奇數,則將它乘3加1(即
),不斷重復這樣的運算,經過有限步后,一定可以得到1.對于科拉茨猜想,目前誰也不能證明,也不能否定.現在請你研究:如果對正整數
(首項)按照上述規則進行變換后的第9項為1(注:1可以多次出現),則
的所有不同值的個數為( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】青少年“心理健康”問題越來越引起社會關注,某校對高一600名學生進行了一次“心理健康”知識測試,并從中抽取了部分學生的成績(得分取正整數,滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖。
分組 | 頻數 | 頻率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | |
[80,90) | ||
[90,100] | 14 | 0.28 |
合計 | 1.00 |
(1)填寫答題卡頻率分布表中的空格,補全頻率分布直方圖,并標出每個小矩形對應的縱軸數據;
(2)請你估算學生成績的平均數及中位數。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在中,
,且
.
(1)求角的大小;
(2)設數列滿足
,前
項和為
,若
,求
的值.
【答案】(1);(2)
或
.
【解析】試題分析:
(1)由題意結合三角形內角和為可得
.由余弦定理可得
,,結合勾股定理可知
為直角三角形,
,
.
(2)結合(1)中的結論可得
.則
,
據此可得關于實數k的方程
,解方程可得
,則
或
.
試題解析:
(1)由已知,又
,所以
.又由
,
所以,所以
,
所以為直角三角形,
,
.
(2)
.
所以
,
由
,得
,所以
,所以
,所以
或
.
【題型】解答題
【結束】
18
【題目】已知點是平行四邊形
所在平面外一點,如果
,
,
.(1)求證:
是平面
的法向量;
(2)求平行四邊形的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,點
,直線
.
(1)求與圓相切,且與直線
垂直的直線方程;
(2)在直線上(
為坐標原點),存在定點
(不同于點
),滿足:對于圓
上任一點
,都有
為一常數,試求所有滿足條件的點
的坐標.
【答案】(1);(2)答案見解析.
【解析】試題分析:
(1)設所求直線方程為,利用圓心到直線的距離等于半徑可得關于b的方程,解方程可得
,則所求直線方程為
(2)方法1:假設存在這樣的點,由題意可得
,則
,然后證明
為常數
為即可.
方法2:假設存在這樣的點,使得
為常數
,則
,據此得到關于
的方程組,求解方程組可得存在點
對于圓
上任一點
,都有
為常數
.
試題解析:
(1)設所求直線方程為,即
,
∵直線與圓相切,∴,得
,
∴所求直線方程為
(2)方法1:假設存在這樣的點,
當為圓
與
軸左交點
時,
;
當為圓
與
軸右交點
時,
,
依題意,,解得,
(舍去),或
.
下面證明點對于圓
上任一點
,都有
為一常數.
設,則
,
∴
,
從而為常數.
方法2:假設存在這樣的點,使得
為常數
,則
,
∴,將
代入得,
,即
對
恒成立,
∴,解得
或
(舍去),
所以存在點對于圓
上任一點
,都有
為常數
.
點睛:求定值問題常見的方法有兩種:
(1)從特殊入手,求出定值,再證明這個值與變量無關.
(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值.
【題型】解答題
【結束】
22
【題目】已知函數的導函數為
,其中
為常數.
(1)當時,求
的最大值,并推斷方程
是否有實數解;
(2)若在區間
上的最大值為-3,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小張經營某一消費品專賣店,已知該消費品的進價為每件40元,該店每月銷售量(百件)與銷售單價x(元/件)之間的關系用下圖的一折線表示,職工每人每月工資為1000元,該店還應交付的其它費用為每月10000元.
(1)把y表示為x的函數;
(2)當銷售價為每件50元時,該店正好收支平衡(即利潤為零),求該店的職工人數;
(3)若該店只有20名職工,問銷售單價定為多少元時,該專賣店可獲得最大月利潤?(注:利潤=收入-支出)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過圓 :
上的點
作
軸的垂線,垂足為
,點
滿足
.當
在
上運動時,記點
的軌跡為
.
(1)求 的方程;
(2)過點 的直線
與
交于
,
兩點,與圓
交于
,
兩點,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com