【題目】數列{an}中,已知對任意n∈N* , a1+a2+a3+…+an=3n﹣1,則a12+a22+a32+…+an2等于( )
A.(3n﹣1)2
B.
C.9n﹣1
D.
科目:高中數學 來源: 題型:
【題目】已知橢圓 的離心率為
,且過點
.
(1)求橢圓的標準方程;
(2)四邊形ABCD的頂點在橢圓上,且對角線AC、BD過原點O,若 . (i) 求
的最值;
(ii) 求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C 的離心率為
,點
在橢圓C上.直線l過點(1,1),且與橢圓C交于A,B兩點,線段AB的中點為M. (I)求橢圓C的方程;
(Ⅱ)點O為坐標原點,延長線段OM與橢圓C交于點P,四邊形OAPB能否為平行四邊形?若能,求出此時直線l的方程,若不能,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC是一個面積較大的三角形,點P是△ABC所在平面內一點且 +
+2
=
,現將3000粒黃豆隨機拋在△ABC內,則落在△PBC內的黃豆數大約是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率e=
,左頂點、上頂點分別為A,B,△OAB的面積為3(點O為坐標原點).
(1)求橢圓C的方程;
(2)若P、Q分別是AB、橢圓C上的動點,且 =λ
(λ<0),求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,D、E分別是△ABC的三等分點,設 =
,
=
,∠BAC=
.
(1)用 ,
分別表示
,
;
(2)若
=15,|
|=3
,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近于圓的面積,并創立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的(四舍五入精確到小數點后兩位)的值為( )(參考數據:sin15°=0.2588,sin75°=0.1305)
A.3.10
B.3.11
C.3.12
D.3.13
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產甲、乙兩種產品均需用A,B兩種原料,已知生產1噸每種產品所需原料及每天原料的可用限額如表所示,如果生產1噸甲、乙產品可獲得利潤分別為4萬元、3萬元,則該企業每天可獲得最大利潤為萬元
甲 | 乙 | 原料限額 | |
A(噸) | 2 | 5 | 10 |
B(噸) | 6 | 3 | 18 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com