【題目】在研究塞卡病毒(Zika virus)某種疫苗的過程中,為了研究小白鼠連續接種該種疫苗后出現癥狀的情況,做接種試驗,試驗設計每天接種一次,連續接種3天為一個接種周期.已知小白鼠接種后當天出現
癥狀的概率為
,假設每次接種后當天是否出現
癥狀與上次接種無關.
(1)若出現癥狀即停止試驗,求試驗至多持續一個接種周期的概率;
(2)若在一個接種周期內出現2次貨3次癥狀,則這個接種周期結束后終止試驗,試驗至多持續3個周期,設接種試驗持續的接種周期數為
,求
的分布列及數學期望.
科目:高中數學 來源: 題型:
【題目】已知,
,
(x≥0)成等差數列.又數列{an}(an>0)中,a1=3,此數列的前n項的和Sn(n∈N*)對所有大于1的正整數n都有Sn=f(Sn-1).
(1)求數列{an}的第n+1項;
(2)若是
,
的等比中項,且Tn為{bn}的前n項和,求Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在下列命題中,不是公理的是( )
A. 平行于同一條直線的兩條直線互相平行
B. 如果一條直線上的兩點在一個平面內,那么這條直線在此平面內
C. 空間中,如果兩個角的兩邊分別對應平行,那么這兩角相等或互補
D. 如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,正確的是( )
A. 復數的模總是正實數
B. 復數集與復平面內所有向量組成的集合一一對應
C. 如果與復數z對應的點在第一象限,則與該復數對應的向量的終點也一定在第一象限
D. 相等的向量對應著相等的復數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】命題“對于任意角θ,cos4θ-sin4θ=cos 2θ”的證明過程為“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”,其中應用了( )
A. 分析法 B. 綜合法
C. 綜合法、分析法綜合使用 D. 間接證法
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為
的正方形,
底面
,
分別為
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)若,試問在線段
上是否存在點
,使得二面角
的余弦值為
?若存在,確定點
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將直線l繞它上面一點P按逆時針方向旋轉角α(0°<α<90°)后,所得直線方程是6x+y-60=0.若再向同方向旋轉90°-α后,所得直線方程是x+y=0,求l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天氣預報說,在今后的三天中,每一天下雨的概率均為40%.現采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產生0到9之間取整數值的隨機數,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個隨機數作為一組,代表這三天的下雨情況.經隨機模擬試驗產生了如下20組隨機數:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,這三天中恰有兩天下雨的概率近似為
A.0.35 B.0.25 C.0.20 D.0.15
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com