精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知橢圓的左、右焦點分別為、,左準線和右準線分別與軸相交于、兩點,、恰好為線段的三等分點

(1)求橢圓的離心率;

(2)過點作直線與橢圓相交于、兩點,且滿足,當△的面積最大時為坐標原點),求橢圓的標準方程

【答案】(1)(2)

【解析】

試題分析:(1)根據恰好為線段的三等分點,得,即,解得離心率(2)根據離心率可設橢圓方程為利用OD為定值表示三角形面積,聯立直線方程與橢圓方程,結合韋達定理表示面積,分離利用基本不等式求最值,確定,最后根據,求出,解出

試題解析:(1)焦點,右準線,由題知,

,,解得

(2)由(1)知,,可設橢圓方程為

設直線的方程為,代入橢圓的方程有,,

因為直線與橢圓相交,所以,

由韋達定理得,,,所以,

得到,,,得到,

所以

當且僅當,等號成立,此時,代入滿足w,

所以所求橢圓方程為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某學校為加強學生的交通安全教育,對學校旁邊,兩個路口進行了8天的檢測調查,得到每天各路口不按交通規則過馬路的學生人數(如莖葉圖所示),且路口數據的平均數比路口數據的平均數小2.

(1)求出路口8個數據中的中位數和莖葉圖中的值;

(2)在路口的數據中任取大于35的2個數據,求所抽取的兩個數據中至少有一個不小于40的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點M(-2,0),N(2,0),動點P滿足條件|PM|-|PN|=2,記動點P的軌跡為W

求W的方程;

若A、B是W上的不同兩點,O是坐標原點,求的最小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,點E為正方形ABCD邊CD上異于點C,D的動點,將ADE沿AE翻折成SAE,使得平面SAE平面ABCE,則下列說法中正確的有(

①存在點E使得直線SA平面SBC;

②平面SBC內存在直線與SA平行

③平面ABCE內存在直線與平面SAE平行;

④存在點E使得SEBA.

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知直三棱柱中,,是棱上的一點,分別為的中點.

1求證:平面;

2的中點時,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業共有20條生產線,由于受生產能力和技術水平等因素的影響,會產生一定量的次品.根據經驗知道,每臺機器產生的次品數萬件與每臺機器的日產量萬件之間滿足關系: .已知每生產1萬件合格的產品可以以盈利3萬元,但每生產1萬件次品將虧損1萬元.

)試將該企業每天生產這種產品所獲得的利潤表示為的函數;

)當每臺機器的日產量為多少時,該企業的利潤最大,最大為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在ABC中,a=b·cos C+c·cos B,其中a,b,c分別為角A,B,C的對邊,在四面體PABC中,S1,S2,S3,S分別表示PAB,PBC,PCA,ABC的面積,α,β,γ依次表示面PAB,面PBC,面PCA與底面ABC所成二面角的大小.寫出對四面體性質的猜想,并證明你的結論

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業共有20條生產線,由于受生產能力和技術水平等因素的影響,會產生一定量的次品.根據經驗知道,每臺機器產生的次品數萬件與每臺機器的日產量萬件之間滿足關系:.已知每生產1萬件合格的產品可以以盈利3萬元,但每生產1萬件次品將虧損1萬元.

)試將該企業每天生產這種產品所獲得的利潤表示為的函數;

)當每臺機器的日產量為多少時,該企業的利潤最大,最大為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一次籃球定點投籃訓練中,規定每人最多投3次.在處每投進一球得3分;在處每投進一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次. 某同學在處的投中率,在處的投中率為.該同學選擇先在處投一球,以后都在處投,且每次投籃都互不影響.用表示

該同學投籃訓練結束后所得的總分,其分布列為:

0

2

3

4

5

0.03

(1)求的值;

(2)求隨機變量的數學期望;

(3)試比較該同學選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视