精英家教網 > 高中數學 > 題目詳情

【題目】已知集合A={x|﹣4<x<1},B={x|( x≥2}.
(1)求A∩B,A∪B;
(2)設函數f(x)= 的定義域為C,求(RA)∩C.

【答案】
(1)解:由( x≥2得( x≥=( 1

則x≤﹣1,即B={x|x≤﹣1},

∵A={x|﹣4<x<1},

∴A∩B={x|﹣4<x≤﹣1},A∪B={x|x<1}


(2)解:由題意得,

,解得x≥2,

∴函數f(x)的定義域C={x|x≥2},

由A={x|﹣4<x<1}得,RA={x|x≤﹣4或x≥1},

∴(RA)∩C={x|x≥2}


【解析】(1)由指數的運算、指數函數的性質求出B,由交、并集的運算分別求出A∩B,A∪B;(2)由對數函數的性質求出定義域C,由補、交集的運算分別求出RA,RA)∩C.
【考點精析】解答此題的關鍵在于理解交、并、補集的混合運算的相關知識,掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知集合A={x||x﹣a|≤3,x∈R},B={x|x2﹣3x﹣4>0,x∈R}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某倉庫為了保持庫內的濕度和溫度,四周墻上均裝有如圖所示的自動通風設施.該設施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點E為AB的中點.△EMN是由電腦控制其形狀變化的三角通風窗(陰影部分均不通風),MN是可以沿設施邊框上下滑動且始終保持和AB平行的伸縮橫桿.

(1)設MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關于x的函數;
(2)求△EMN的面積S(平方米)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某險種的基本保費為(單位:元),繼續購買該險種的投保人稱為續保人,

續保人本年度的保費與其上年度出險次數的關聯如下:

上年度出險次數

0

1

2

3

4

保費

隨機調查了該險種的400名續保人在一年內的出險情況,得到如下統計表:

出險次數

0

1

2

3

4

頻數

120

100

60

60

40

20

A為事件:“一續保人本年度的保費不高于基本保費”.的估計值;

(Ⅱ)B為事件:“一續保人本年度的保費高于基本保費但不高于基本保費的190%”.

的估計值;

(III)求續保人本年度的平均保費估計值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax3+bx2﹣3x在x=±1處取得極值.
(1)討論f(1)和f(﹣1)是函數f(x)的極大值還是極小值;
(2)過點A(0,16)作曲線y=f(x)的切線,求此切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=
(1)求函數f(x)的零點;
(2)若實數t滿足f(log2t)+f(log2 )<2f(2),求f(t)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“累積凈化量”是空氣凈化器質量的一個重要衡量指標,它是指空氣凈化從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示,根據《空氣凈化器》國家標準,對空氣凈化器的累計凈化量有如下等級劃分:

累積凈化量(克)

12以上

等級

為了了解一批空氣凈化器(共5000臺)的質量,隨機抽取臺機器作為樣本進行估計,已知這臺機器的累積凈化量都分布在區間中,按照、、、均勻分組,其中累積凈化量在的所有數據有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:

(1)求的值及頻率分布直方圖中的值;

(2)以樣本估計總體,試估計這批空氣凈化器(共5000臺)中等級為的空氣凈化器有多少臺?

(3)從累積凈化量在的樣本中隨機抽取2臺,求恰好有1臺等級為的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數f(x)定義域中任意的x1 , x2(x1≠x2),有如下結論:
①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
>0;

當f(x)=lgx時,上述結論中正確結論的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設二次函數f(x)=ax2+bx+c(a≠0)在區間[﹣2,2]上的最大值、最小值分別是M,m,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求M和m的值;
(2)若A={1},且a≥1,記g(a)=M+m,求g(a)的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视