【題目】已知函數f(x)=
(1)求函數f(x)的零點;
(2)若實數t滿足f(log2t)+f(log2 )<2f(2),求f(t)的取值范圍.
【答案】
(1)解:當x<0時,解 得:x=ln
=﹣ln3,
當x≥0時,解 得:x=ln3,
故函數f(x)的零點為±ln3
(2)解:當x>0時,﹣x<0,
此時f(﹣x)﹣f(x)= =
=0,
故函數f(x)為偶函數,
又∵x≥0時,f(x)= 為增函數,
∴f(log2t)+f(log2 )<2f(2)時,2f(log2t)<2f(2),
即|log2t|<2,
﹣2<log2t<2,
∴t∈( ,4)
故f(t)∈( ,
)
【解析】(1)分類討論,函數對應方程根的個數,綜合討論結果,可得答案.(2)分析函數的奇偶性和單調性,進而可將不等式化為|log2t|<2,解得f(t)的取值范圍.
科目:高中數學 來源: 題型:
【題目】為了調查某地區老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區調查了500位老年人,結果如下:
男 | 女 | 總計 | |
需要幫助 | 40 | m | 70 |
不需要幫助 | n | 270 | s |
總計 | 200 | t | 500 |
(1)求m,n,s,t的值;
(2)估計該地區老年人中,需要志愿者提供幫助的比例;
(3)能否有99%的把握認為該地區的老年人是否需要志愿者幫助與性別有關.
參考公式:
隨機變量K2= ,n=a+b+c+d
在2×2列聯表:
y1 | y2 | 總計 | |
x1 | a | b | a+b |
x2 | c | d | c+d |
總計 | a+c | b+d | a+b+c+d |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數y=f(x)對任意x都滿足f(x+1)=﹣f(x),且當0≤x<1時,f(x)=x,則函數g(x)=f(x)﹣ln|x|的零點個數為個.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班級體育課舉行了一次“投籃比賽”活動,為了了解本次投籃比賽學生總體情況,從中抽取了甲乙兩個小組樣本分數的莖葉圖如圖所示.
(1)分別求出甲乙兩個小組成績的平均數與方差,并判斷哪一個小組的成績更穩定:
(2)從甲組成績不低于60分的同學中,任意抽取3名同學,設表示所抽取的3名同學中得分在
的學生個數,求
的分布列及其數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形ABCD所在的平面和平面互相垂直,等腰梯形
中,
,
,
,
,
分別為
的中點,
為底面
的重心.
(Ⅰ)求證: ∥平面
;
(Ⅱ)求直線與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com