【題目】如圖,矩形ABCD所在的平面和平面互相垂直,等腰梯形
中,
,
,
,
,
分別為
的中點,
為底面
的重心.
(Ⅰ)求證: ∥平面
;
(Ⅱ)求直線與平面
所成角的正弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)根據重心定義,可得連結延長交
于
,則
為
的中點,根據三角形中位線性質得
∥
,再由線面平行判定定理得
∥平面
,同理可得
∥平面
,因此平面
∥平面
,即得
∥平面
;(2)利用面面垂直性質定理尋找線面垂直:作AQ⊥EF,則得AQ⊥平面ABCD,作AH⊥DQ,可得AH⊥面EQDC,因此直線
與平面
所成角為∠ACH,解直角三角形得直線AC與平面CEF所成角正弦值
試題解析:(Ⅰ)連結延長交
于
,則
為
的中點,又
為
的中點,
∴∥
,又∵
平面
,∴
∥平面
連結,則
∥
,
平面
,∴
∥平面
∴平面
∥平面
,
平面
平面
(Ⅱ)作AQ⊥EF交EF延長線于Q,作AH⊥DQ交DQ于H,則AH⊥面EQDC
∴∠ACH就是直線AC與平面CEF所成角
在RtADQ中,AH=
在RtACH中,sin∠ACH=
直線AC與平面CEF所成角正弦值為
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=x2﹣16x+q+3:
(1)若函數在區間[﹣1,1]上存在零點,求實數q的取值范圍;
(2)問:是否存在常數t(t≥0),當x∈[t,10]時,f(x)的值域為區間D,且D的長度為12﹣t.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=﹣2x2+ax+b且f(2)=﹣3.
(1)若函數f(x)的圖象關于直線x=1對稱,求函數f(x)在區間[﹣2,3]上的值域;
(2)若函數f(x)在區間[1,+∞)上遞減,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設二次函數f(x)=ax2+bx+c(a≠0)在區間[﹣2,2]上的最大值、最小值分別是M,m,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求M和m的值;
(2)若A={1},且a≥1,記g(a)=M+m,求g(a)的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)為定義在R上的奇函數,且當x>0時,f(x)=1﹣x2 .
(1)求函數f(x)的解析式;
(2)作出函數f(x)的圖象.
(3)若函數f(x)在區間[a,a+1]上單調,直接寫出實數a的取值范圍.(不必寫出演算過程)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(﹣4,4)、B(4,4),直線AM與BM相交于點M,且直線AM的斜率與直線BM的斜率之差為﹣2,點M的軌跡為曲線C.
(1)求曲線C 的軌跡方程;
(2)Q為直線y=﹣1上的動點,過Q做曲線C的切線,切點分別為D、E,求△QDE的面積S的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在高中學習過程中,同學們經常這樣說:“數學物理不分家,如果物理成績好,那么學習數學就沒什么問題.”某班針對“高中生物理學習對數學學習的影響”進行研究,得到了學生的物理成績與數學成績具有線性相關關系的結論,現從該班隨機抽取5名學生在一次考試中的數學和物理成績,如下表:
編號 成績 | 1 | 2 | 3 | 4 | 5 |
物理( | 90 | 85 | 74 | 68 | 63 |
數學( | 130 | 125 | 110 | 95 | 90 |
(1)求數學成績對物理成績
的線性回歸方程
(
精確到
),若某位學生的物理成績為80分,預測他的數學成績(結果精確到個位);
(2)要從抽取的這五位學生中隨機選出2位參加一項知識競賽,求選中的學生的數學成績至少有一位高于120分的概率.
(參考公式: ,
.)
(參考數據: ,
.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在“出彩中國人”的一期比賽中,有6位歌手(1~6)登臺演出,由現場的百家大眾媒體投票選出最受歡迎的出彩之星,各家媒體獨立地在投票器上選出3位出彩候選人,其中媒體甲是1號歌手的歌迷,他必選1號,另在2號至6號中隨機的選2名;媒體乙不欣賞2號歌手,他必不選2號;媒體丙對6位歌手的演唱沒有偏愛,因此在1至6號歌手中隨機的選出3名.
(1)求媒體甲選中3號且媒體乙未選中3號歌手的概率;
(2)X表示3號歌手得到媒體甲、乙、丙的票數之和,求X的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com