【題目】已知數列的前
項和為
,且滿足
,
,設
,
.
(Ⅰ)求證:數列是等比數列;
(Ⅱ)若,
,求實數
的最小值;
(Ⅲ)當時,給出一個新數列
,其中
,設這個新數列的前
項和為
,若
可以寫成
(
,
且
,
)的形式,則稱
為“指數型和”.問
中的項是否存在“指數型和”,若存在,求出所有“指數型和”;若不存在,請說明理由.
【答案】(I)詳見解析;(II);(III)
為指數型和.
【解析】
(I)通過計算證明證得,來證得數列
是等比數列.
(II)利用求得數列
的通項公式,由
,
,求得
的最小值.
(III)先求得的通項公式,對
分成偶數和奇數兩種情況進行分類討論,根據“指數型和”的定義,求出符合題意的“指數型和”.
(I),
.由于
,當
時,
,所以數列
是等比數列.
,
.
(II)由(I)得,
,所以
.因為
,
.當
時,
,
,而
,所以
,即
,化簡得
,由于當
時,
單調遞減,最大值為
,所以
,又
,所以
的最小值為
.
(III)由(I)當時,
,當
時,
.
也符合上式,所以對正整數
都有
.由
,(
且
),
只能是不小于
的奇數.
①當為偶數時,
,由于
和
都是大于
的正整數,所以存在正整數
,使得
,
,所以
,且
,相應的
,即有
,
為“指數型和”;
② 當為奇數時,
,由于
是
個奇數之和,仍為奇數,又
為正偶數,所以
不成立,此時沒“指數型和”.
綜上所述,中的項存在“指數型和”,為
.
科目:高中數學 來源: 題型:
【題目】微信運動,是由騰訊開發的一個類似計步數據庫的公眾賬號.用戶可以通過關注微信運動公眾號查看自己每天行走的步數,同時也可以和其他用戶進行運動量的或點贊.微信運動公眾號為了解用戶的一些情況,在微信運動用戶中隨機抽取了100名用戶,統計了他們某一天的步數,數據整理如下:
| ||||||
| 5 | 20 | 50 | 15 | 5 | 5 |
(1)根據表中數據,在如圖所示的坐標平面中作出其頻率分布直方圖,并在縱軸上標明各小長方形的高;
(2)若視頻率分布為概率分布,在微信運動用戶中隨機抽取3人,求至少2人步數多于1.2萬步的概率;
(3)若視頻率分布為概率分布,在微信運動用戶中隨機抽取2人,其中每日走路不超過0.8萬步的有人,超過1.2萬步的有
人,設
,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某險種的基本保費為a(單位:元),繼續購買該險種的投保人稱為續保人,續保人本年度的保費與其上年度出險次數的關聯如下:
上年度出險次數 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
隨機調查了該險種的200名續保人在一年內的出險情況,得到如下統計表:
出險次數 | 0 | 1 | 2 | 3 | 4 | ≥5 |
頻數 | 60 | 50 | 30 | 30 | 20 | 10 |
(1)記A為事件:“一續保人本年度的保費不高于基本保費”,求P(A)的估計值;
(2)記B為事件:“一續保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;
(3)求續保人本年度平均保費的估計值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某苗木基地常年供應多種規格的優質樹苗.為更好地銷售樹苗,建設生態文明家鄉和美好家園,基地積極主動地聯系了甲、乙、丙三家公司,假定基地得到公司甲、乙、丙的購買合同的概率分別、
、
,且基地是否得到三家公司的購買合同是相互獨立的.
(1)若公司甲計劃與基地簽訂300棵銀杏實生苗的銷售合同,每棵銀杏實生苗的價格為90元,栽種后,每棵樹苗當年的成活率都為0.9,對當年沒有成活的樹苗,第二年需再補種1棵.現公司甲為苗木基地提供了兩種售后方案,
方案一:公司甲購買300棵銀杏樹苗后,基地需提供一年一次,共計兩年的補種服務,且每次補種人工及運輸費用平均為800元;
方案二:公司甲購買300棵銀杏樹苗后,基地一次性地多給公司甲60棵樹苗,后期的移栽培育工作由公司甲自行負責.
若基地首次運送方案一的300棵樹苗及方案二的360棵樹苗的運費及栽種費用合計都為1600元,試估算兩種方案下苗木基地的合同收益分別是多少?
(2)記為該基地得到三家公司購買合同的個數,若
,求隨機變量
的分布列與數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是邊長為2的正方形,
平面
,且
.
(Ⅰ)求證:平面平面
;
(Ⅱ)線段上是否存在一點
,使二而角
等于45°?若存在,請找出點
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是一個單調遞增的等比數列,
是一個等差數列,
是
的前
項和,其中
,
,
成等差數列,
.
(1)求的通項公式;
(2)若,
,
既成等比數列,又成等差數列.
(i)求的通項公式;
(ii)對于數列,若
且
,或
且
,則
為數列
的轉折點,求
的轉折點個數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com