【題目】定義實數a,b間的計算法則如下.
(1)計算;
(2)對的任意實數x,y,z,判斷
與
的大小,并說明理由;
(3)寫出函數,
的解析式,作出該函數的圖象,并寫出該函數單調遞增區間和值域(只需要寫出結果).
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求函數的最小值及
取到最小值時自變量x的集合;
(2)指出函數y=的圖象可以由函數y=sinx的圖象經過哪些變換得到;
(3)當x∈[0,m]時,函數y=f(x)的值域為,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的定義域為集合
.
(1)若,求
的取值范圍;
(2)若存在兩個不相等負實數,使得
,求實數
的取值范圍;
(3)是否存在實數,滿足“對于任意
,都有
;對于任意的
.都有
”,若存在,求
出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(a為正常數),且函數
和
的圖象與y軸的交點重合.
(1)求a實數的值
(2)若(b為常數)試討論函數
的奇偶性;
(3)若關于x的不等式有解,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,動點P與兩定點A(-2,0),B(2,0)連線的斜率之積為-,記點P的軌跡為曲線C
(I)求曲線C的方程;
(II)若過點(-,0)的直線l與曲線C交于M,N兩點,曲線C上是否存在點E使得四邊形OMEN為平行四邊形?若存在,求直線l的方程,若不存在,說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對在直角坐標系的第一象限內的任意兩點作如下定義:若,那么稱點
是點
的“上位點”同時點
是點
的“下位點”
(1)試寫出點的一個“上位點”坐標和一個“下位點”坐標;
(2)已知點是點
的“上位點”,判斷是否一定存在點
滿足既是點
的“上位點”,又是點
的“下位點”若存在,寫出一個點
坐標,并證明:若不存在,則說明理由;
(3)設正整數滿足以下條件:對集合
,總存在
,使得點
既是點
的“下位點”,又是點
的“上位點”,求正整數
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數的圖像經過點
,且滿足
,
(1)求的解析式;
(2)已知,求函數
在
的最大值和最小值;
函數的圖像上是否存在這樣的點,其橫坐標是正整數,縱坐標是一個完全平方數?如果存在,求出這樣的點的坐標;如果不存在,請說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com