【題目】如圖,在直三棱柱ABC—A1B1C1中,AB=BC=BB1, ,D為AC上的點,B1C∥平面A1BD;
(1)求證:BD⊥平面;
(2)若且
,求三棱錐A-BCB1的體積.
【答案】(1)見解析;(2)
【解析】【試題分析】(1)運用線面垂直判定定理推證;(2)先求三棱錐的高與底面面積再運用三棱錐的體積公式求解:
(1)連結ED,
∵平面AB1C∩平面A1BD=ED,B1C∥平面A1BD,
∴B1C∥ED,
∵E為AB1中點,∴D為AC中點,
∵AB=BC, ∴BD⊥AC①
【法一】:由A1A⊥平面ABC, 平面ABC,得A1A⊥BD②,
由①②及A1A、AC是平面內的兩條相交直線,得BD⊥平面
.
【法二】:由A1A⊥平面ABC,A1A平面
∴平面⊥平面ABC ,又平面
平面ABC=AC,得BD⊥平面
.
(2)由得BC=BB1=1,
由(1)知,又
得
,
∵,∴
,
∴
科目:高中數學 來源: 題型:
【題目】在四棱柱中,
底面
,底面
為菱形,
為
與
交點,已知
,
.
(Ⅰ)求證: 平面
;
(Ⅱ)求證: ∥平面
;
(Ⅲ)設點在
內(含邊界),且
,說明滿足條件的點
的軌跡,并求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某地區兒童的身高與體重的一組數據,我們用兩種模型①,②
擬合,得到回歸方程分別為
,
,作殘差分析,如表:
身高 | 60 | 70 | 80 | 90 | 100 | 110 |
體重 | 6 | 8 | 10 | 14 | 15 | 18 |
0.41 | 0.01 | 1.21 | -0.19 | 0.41 | ||
-0.36 | 0.07 | 0.12 | 1.69 | -0.34 | -1.12 |
(Ⅰ)求表中空格內的值;
(Ⅱ)根據殘差比較模型①,②的擬合效果,決定選擇哪個模型;
(Ⅲ)殘差大于的樣本點被認為是異常數據,應剔除,剔除后對(Ⅱ)所選擇的模型重新建立回歸方程.
(結果保留到小數點后兩位)
附:對于一組數據,其回歸直線
的斜率和截距的最小二乘法估計分別為
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com