【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知 .
(1)求角B的大小;
(2)若b= ,a+c=3,求△ABC的面積.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分別為BC,AD的中點,點M在線段PD上.
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(已知函數f(x)=|2x+1|+|x﹣2|,不等式f(x)≤2的解集為M.
(1)求M;
(2)記集合M的最大元素為m,若正數a,b,c滿足abc=m, 求證: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國“一帶一路”戰略構思提出后, 某科技企業為抓住“一帶一路”帶來的機遇, 決定開發生產一款大型電子設備, 生產這種設備的年固定成本為萬元, 每生產
臺,需另投入成本
(萬元), 當年產量不足
臺時,
(萬元); 當年產量不小于
臺時
(萬元), 若每臺設備售價為
萬元, 通過市場分析,該企業生產的電子設備能全部售完.
(1)求年利潤 (萬元)關于年產量
(臺)的函數關系式;
(2)年產量為多少臺時 ,該企業在這一電子設備的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據統計,截至2016年底全國微信注冊用戶數量已經突破9.27億,為調查大學生這個微信用戶群體中每人擁有微信群的數量,現從某市大學生中隨機抽取100位同學進行了抽樣調查,結果如下:
微信群數量(個) | 頻數 | 頻率 |
0~4 | 0.15 | |
5~8 | 40 | 0.4 |
9~12 | 25 | |
13~16 | a | c |
16以上 | 5 | b |
合計 | 100 | 1 |
(Ⅰ)求a,b,c的值及樣本中微信群個數超過12的概率;
(Ⅱ)若從這100位同學中隨機抽取2人,求這2人中恰有1人微信群個數超過12的概率;
(Ⅲ)以(1)中的頻率作為概率,若從全市大學生中隨機抽取3人,記X表示抽到的是微信群個數超過12的人數,求X的分布列和數學期望E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,已知直線l的參數方程為 (t為參數,0<φ<π),曲線C的極坐標方程為ρcos2θ=8sinθ.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A、B兩點,當φ變化時,求|AB|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知D= ,給出下列四個命題:
P1:(x,y)∈D,x+y+1≥0;
P2:(x,y)∈D,2x﹣y+2≤0;
P3:(x,y)∈D, ≤﹣4;
P4:(x,y)∈D,x2+y2≤2.
其中真命題的是( )
A.P1 , P2
B.P2 , P3
C.P2 , P4
D.P3 , P4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經過點(﹣4,2ln2)
(1)討論函數f(x)的單調性
(2)若不等式 恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·新課標I卷)已知函數f(x)=x3+ax+, g(x)=-lnx.
(1)當a為何值時,x軸為曲線y=f(x)的切線;
(2)用min{m,n} 表示m,n中的最小值,設函數h(x)=min{f(x),g(x)}(x>0),,討論h(x)零點的個數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com