精英家教網 > 高中數學 > 題目詳情

【題目】為了了解我市參加2018年全國高中數學聯賽的學生考試結果情況,從中選取60名同學將其成績(百分制,均為正數)分成六組后,得到部分頻率分布直方圖(如圖),觀察圖形,回答下列問題:

(1)求分數在內的頻率,并補全這個頻率分布直方圖;

(2)根據頻率分布直方圖,估計本次考試成績的眾數、中位數、均值.

【答案】(1)見解析;(2)眾數75和85、中位數72、均值70.5

【解析】

(1)利用所有小矩形的面積之和為1,求得分數在的頻率,進而可求出對應小矩形的高即可補全頻率分布直方圖;

(2)眾數即是出現次數最多的數,在頻率分布直方圖中即是頻率最高的組的中間值;中位數兩邊的小矩形面積之和相等,可確定中位數;每組的中間值乘以該組的頻率,再求和即可求出均值.

(1)設分數在內的頻率為,根據頻率分布直方圖,則有,可得

分數在內的頻率為0.25.

所以頻率分布直方圖為:

(2)由圖知,眾數為:75和85

因為前3組的頻率和為0.45,前4組的頻率和為0.7,所以中位數在70和80之間,設中位數為,則,解得.

中位數為72.

均值為:.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓 (其中為圓心)上的每一點橫坐標不變,縱坐標變為原來的一半,得到曲線.

1)求曲線的方程;

2若點為曲線上一點,過點作曲線的切線交圓于不同的兩點(其中的右側),已知點.求四邊形面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+bx+c,其圖象與y軸的交點為(0,1),且滿足f(1﹣x)=f(1+x).

(1)求f(x);

(2)設 ,m0,求函數g(x)在[0,m]上的最大值;

(3)設h(x)=lnf(x),若對于一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓 的離心率為,兩條準線之間的距離為.

(1)求橢圓的標準方程;

(2)已知橢圓的左頂點為,點在圓上,直線與橢圓相交于另一點,且的面積是的面積的倍,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列所給4個圖象中,與所給3件事吻合最好的順序為 ( )

我離開學校不久,發現自己把作業本忘在教室,于是立刻返回教室里取了作業本再回家;

我放學回家騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間;

我放學從學校出發后,心情輕松,緩緩行進,后來為了趕時間開始加速.

A.(1)(2)(4)B.(4)(1)(2)C.(4)(1)(3)D.(4)(2)(3)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某調查機構對本市小學生課業負擔情況進行了調查,設平均每人每天做作業的時間為分鐘,有1200名小學生參加了此項調查,調查所得到的數據用程序框圖處理(如圖),若輸出的結果是840,若用樣本頻率估計概率,則平均每天做作業的時間在0~60分鐘內的學生的概率是( )

A. 0.32 B. 0.36 C. 0.7 D. 0.84

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】李明自主創業,在網上經營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60/盒、65/盒、80/盒、90/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網上支付成功后,李明會得到支付款的80%

①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;

②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在底面是正三角形的三棱錐中,D 為PC的中點,,

1)求證:平面 ;

2)求 BD 與平面 ABC 所成角的大。

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執行下面的程序框圖,如果輸入的,則輸出的( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视