精英家教網 > 高中數學 > 題目詳情

【題目】在正方體ABCD﹣A1B1C1D1中,E是A1B1上一點,若平面EBD與平面ABCD所成銳二面角的正切值為 ,設三棱錐A﹣A1D1E外接球的直徑為a,則 =

【答案】
【解析】解:過E作EF∥AA1交AB于F,過F作FG⊥BD于G,連接EG,則∠EGF為平面EBD與平面AB﹣CD所成銳二面角的平面角,∵ ,∴

設AB=3,則EF=3,∴ ,則BF=2=B1E,

∴A1E=1,則三棱錐A﹣A1D1E外接球的直徑 ,

所以答案是

【考點精析】認真審題,首先需要了解棱柱的結構特征(兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形),還要掌握球內接多面體(球的內接正方體的對角線等于球直徑;長方體的外接球的直徑是長方體的體對角線長)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知圓心在直線上的圓經過點,但不經過坐標原點,并且直線與圓相交所得的弦長為4.

(1)求圓的一般方程;

(2)若從點發出的光線經過軸反射,反射光線剛好通過圓的圓心,求反射光線所在的直線方程(用一般式表達).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了調查喜歡旅游是否與性別有關,調查人員就“是否喜歡旅游”這個問題,在火車站分別隨機調研了50名女性和50名男性,根據調研結果得到如圖所示的等高條形圖
(Ⅰ)完成下列2×2列聯表:

喜歡旅游

不喜歡旅游

合計

女性

男性

合計

(II)能否在犯錯率不超過0.025的前提下認為“喜歡旅游與性別有關”
附:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 的圖像如圖所示.

(1)求函數的解析式;

(2)當時,求函數的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,MD⊥平面ABCD,NB∥MD,且AD=2,NB=1,CD=MD=3.

(1)過B作平面BFG∥平面MNC,平面BFG與CD、DM分別交于F、G,求AF與平面MNC所成角的正弦值;
(2)E為直線MN上一點,且平面ADE⊥平面MNC,求 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點是圓內一點,直線.

(1)若圓的弦恰好被點平分,求弦所在直線的方程;

(2)若過點作圓的兩條互相垂直的弦,求四邊形的面積的最大值;

(3)若 上的動點,過作圓的兩條切線,切點分別為.證明:直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數滿足,且的最小值是.

(1)求的解析式;

(2)若關于的方程在區間上有唯一實數根,求實數的取值范圍;

(3)函數,對任意都有恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视