精英家教網 > 高中數學 > 題目詳情

【題目】代表紅球,代表藍球,代表黑球,由加法原理及乘法原理,從1個紅球和1個藍球中取出若干個球的所有取法可由的展開式表示出來,如:“1”表示一個球都不取、“”表示取出一個紅球,而“”用表示把紅球和藍球都取出來.以此類推,下列各式中,其展開式可用來表示從5個有區別的紅球、5個無區別的藍球、5個無區別的黑球中取出若干個球,且所有的藍球都取出或都不取出的所有取法的是( )

A.B.

C.D.

【答案】D

【解析】

分三步處理問題,分別表示出取紅球、籃球、黑球的表達式,相乘即可求得.

第一步,從5個有區別的紅球中取出若干球,

則有

第二步,從5個無區別的藍球中都取出或都不取出,要滿足題意,

只有

第三步,從5個無區別的黑球中取出若干個,

則有.

根據分布計數原理,則要滿足題意的取法有:

.

故選:D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為響應國家提出的“大眾創業,萬眾創新”的號召,小李同學大學畢業后,決定利用所學專業進行自主創業。經過市場調查,生產某小型電子產品需投入年固定成本為5萬元,每年生產萬件,需另投入流動成本為萬元,且,每件產品售價為10元。經市場分析,生產的產品當年能全部售完。

(1)寫出年利潤(萬元)關于年產量(萬件)的函數解析式;

(注:年利潤=年銷售收入-固定成本-流動成本)

(2)年產量為多少萬件時,小李在這一產品的生產中所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的頂點在原點,焦點在x軸的正半軸上,過拋物線的焦點且斜率為1的直線與拋物線交于A、B兩點,若

(1)求拋物線的方程;

(2)若AB的中垂線交拋物線于C、D兩點,求過A、B、C、D四點的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】3名男生,4名女生,按照不同的要求排隊,求不同的排隊方案的方法種數.(要求每問要有適當的分析過程,列式并算出答案)

1)選其中5人排成一排;

2)排成前后兩排,前排3人,后排4人;

3)全體站成一排,男、女各站在一起;

4)全體站成一排,男生不能站在一起;

5)全體站成一排,甲不站排頭也不站排尾.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一款擊鼓小游戲的規則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現一次音樂,要么不出現音樂;每盤游戲擊鼓三次后,出現一次音樂獲得10分,出現兩次音樂獲得20分,出現三次音樂獲得100分,沒有出現音樂則扣除200分(即獲得分).設每次擊鼓出現音樂的概率為,且各次擊鼓出現音樂相互獨立.

1)設每盤游戲獲得的分數為,求的分布列;

2)玩三盤游戲,至少有一盤出現音樂的概率是多少?

3)玩過這款游戲的許多人都發現,若干盤游戲后,與最初的分數相比,分數沒有增加反而減少了.請運用概率統計的相關知識分析分數減少的原因.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校針對校食堂飯菜質量開展問卷調查,提供滿意與不滿意兩種回答,調查結果如下表(單位:人):

學生

高一

高二

高三

滿意

500

600

800

不滿意

300

200

400

1)求從所有參與調查的人中任選1人是高三學生的概率;

2)從參與調查的高三學生中,用分層抽樣的方法抽取6人,在這6人中任意選取2人,求這兩人對校食堂飯菜質量都滿意的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著手機的普及,大學生迷戀手機的現象非常嚴重.為了調查雙休日大學生使用手機的時間,某機構采用不記名方式隨機調查了使用手機時間不超過10小時的50名大學生,將50人使用手機的時間分成5組:,,分別加以統計,得到下表,根據數據完成下列問題:

使用時間/

大學生/

5

10

15

12

8

1)完成頻率分布直方圖,并根據頻率分布直方圖估計大學生使用手機時間的中位數(保留小數點后兩位);

2)用分層抽樣的方法從使用手機時間在區間,的大學生中抽取6人,再從這6人中隨機抽取2人,求這2人取自不同使用時間區間的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數,現分別從集合中隨機取一個數,得到有序數對.

1)若,求方程有實數根的概率;

2)若,,求函數在區間上是減函數的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數對定義域內的每一個值,在其定義域內都存在唯一的,使成立,則該函數為“依附函數”.

(1)判斷函數是否為“依附函數”,并說明理由;

(2)若函數在定義域上“依附函數”,求的取值范圍;

(3)已知函數在定義域上為“依附函數”.若存在實數,使得對任意的,不等式都成立,求實數的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视