【題目】已知等差數列{an}的前n項和為Sn , 且a3=7,a5+a7=26
(1)求an及Sn;
(2)令bn= (n∈N*)求數列{bn}的前n項和Tn .
【答案】
(1)解:設等差數列{an}的公差為d,
則a3=a1+2d=7,a5+a7=2a1+10d=26
聯立解之可得a1=3,d=2,
故an=3+2(n﹣1)=2n+1
Sn=3n+ =n2+2n
(2)解:由(1)可知bn=
= =
=
(
),
故數列{bn}的前n項和Tn= (1﹣
+
+…+
)=
(1﹣
)=
【解析】(1)設等差數列{an}的公差為d,由題意可得關于首項和公差的方程組,解之代入通項公式和求和公式可得;(2)由(1)可知bn= =
(
),由裂項相消法可得其和.
【考點精析】本題主要考查了等差數列的通項公式(及其變式)和等差數列的前n項和公式的相關知識點,需要掌握通項公式:或
;前n項和公式:
才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+φ)(其中A>0, )的圖象如圖所示,為了得到g(x)=2sin2x的圖象,則只需將f(x)的圖象( )
A.向右平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向左平移 個長度單位
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的一條對稱軸為
,且最高點的縱坐標是
.
(1)求的最小值及此時函數
的最小正周期、初相;
(2)在(1)的情況下,設,求函數
在
上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(x+1),g(x)=loga(1﹣x)其中(a>0且a≠1).
(1)求函數f(x)+g(x)的定義域;
(2)判斷f(x)+g(x)的奇偶性,并說明理由;
(3)求使f(x)﹣g(x)>0成立的x的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1= 且an+1=
.設bn+2=3
,數列{cn}滿足cn=anbn .
(1)求數列{bn}通項公式;
(2)求數列{cn}的前n項和Sn;
(3)若cn≤ +m﹣1對一切正整數n恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= 為奇函數.
(1)求實數a的值;
(2)試判斷函數的單調性并加以證明;
(3)對任意的x∈R,不等式f(x)<m恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C的方程為:x2+y2=4
(1)求過點P(2,1)且與圓C相切的直線l的方程;
(2)直線l過點D(1,2),且與圓C交于A、B兩點,若|AB|=2 ,求直線l的方程;
(3)圓C上有一動點M(x0 , y0), =(0,y0),若向量
=
+
,求動點Q的軌跡方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com