精英家教網 > 高中數學 > 題目詳情

【題目】棋盤上標有第0,1,2,,100站,棋子開始時位于第0站,棋手拋擲均勻硬幣走跳棋游戲.若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第99站(勝利大本營)或第100站(失敗集中營)是,游戲結束.設棋子跳到第n站的概率為.

1)求的值;

2)證明:

3)求的值.

【答案】123

【解析】

(1)棋子跳到第3站有以下三種途徑:連續三次擲出正面,其概率在;第一次擲出反面,第二次擲出正面,其概率為;第一次擲出正面,第二次擲出反面,其概率為,因此 .

(2)易知棋子先跳到第站,再擲出反面,其概率為;棋子先跳到第站,再擲出正面,其概率為,因此有

,

也即.

(3)由(2)知數列是首項為 ,公比為的等比數列.因此有.由此得到

.

由于若跳到第99站時,自動停止游戲,故有.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】從如圖所示的,由9個單位小方格組成的,方格表的16個頂點中任取三個頂點,則這三個點構成直角三角形的概率為______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點是橢圓上任一點,點到直線的距離為,到點的距離為,且,若直線與橢圓交于不同兩點、都在軸上方),且.

1)求橢圓的標準方程;

2)當為橢圓與軸正半軸的交點時,求直線的方程;

3)對于動直線,是否存在一個定點,無論如何變化,直線總經過此定點?若存在,求出定點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是拋物線上一點,經過點的直線與拋物線交于、兩點(不同于點),直線、分別交直線于點、.

1)求拋物線方程及其焦點坐標;

2)求證:以為直徑的圓恰好經過原點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法中所有正確的序號是_________

①兩直線的傾斜角相等,則斜率必相等;

②若動點到定點和定直線的距離相等,則動點的軌跡是拋物線;

③已知是橢圓的兩個焦點,過點的直線與橢圓交于兩點,則的周長為;

④曲線的參數方程為為參數,則它表示雙曲線且漸近線方程為;

⑤已知正方形,則以、為焦點,且過、兩點的橢圓的離心率為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠生產某種產品的年固定成本為250萬元,每生產千件,需另投入成本,當年產量不足80千件時,(萬元);當年產量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產的商品能全部售完.

1)寫出年利潤(萬元)關于年產量(千件)的函數解析式;

2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,的內心為、分別是邊、、的中點,證明:直線平分的周長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓與圓相切,并且橢圓上動點與圓上動點間距離最大值為.

1)求橢圓的方程;

2)過點作兩條互相垂直的直線,交于兩點,與圓的另一交點為,求面積的最大值,并求取得最大值時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列{an}滿足a1=1,對任意nN*都有an+1=an+n+1,則=(   。

A.B.C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视