【題目】棋盤上標有第0,1,2,,100站,棋子開始時位于第0站,棋手拋擲均勻硬幣走跳棋游戲.若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第99站(勝利大本營)或第100站(失敗集中營)是,游戲結束.設棋子跳到第n站的概率為
.
(1)求的值;
(2)證明:;
(3)求的值.
科目:高中數學 來源: 題型:
【題目】已知點是橢圓
上任一點,點
到直線
:
的距離為
,到點
的距離為
,且
,若直線
與橢圓
交于不同兩點
、
(
、
都在
軸上方),且
.
(1)求橢圓的標準方程;
(2)當為橢圓與
軸正半軸的交點時,求直線
的方程;
(3)對于動直線,是否存在一個定點,無論
如何變化,直線
總經過此定點?若存在,求出定點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是拋物線
上一點,經過點
的直線
與拋物線
交于
、
兩點(不同于點
),直線
、
分別交直線
于點
、
.
(1)求拋物線方程及其焦點坐標;
(2)求證:以為直徑的圓恰好經過原點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中所有正確的序號是_________
①兩直線的傾斜角相等,則斜率必相等;
②若動點到定點
和定直線
的距離相等,則動點
的軌跡是拋物線;
③已知、
是橢圓
的兩個焦點,過點
的直線與橢圓交于
、
兩點,則
的周長為
;
④曲線的參數方程為為參數
,則它表示雙曲線且漸近線方程為
;
⑤已知正方形,則以
、
為焦點,且過
、
兩點的橢圓的離心率為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產某種產品的年固定成本為250萬元,每生產千件,需另投入成本
,當年產量不足80千件時,
(萬元);當年產量不小于80千件時,
(萬元),每件售價為0.05萬元,通過市場分析,該廠生產的商品能全部售完.
(1)寫出年利潤(萬元)關于年產量
(千件)的函數解析式;
(2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓:
與圓
:
相切,并且橢圓
上動點與圓
上動點間距離最大值為
.
(1)求橢圓的方程;
(2)過點作兩條互相垂直的直線
,
,
與
交于
兩點,
與圓
的另一交點為
,求
面積的最大值,并求取得最大值時直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com