【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
的參數方程為
(
為參數),在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)求曲線和直線
在該直角坐標系下的普通方程;
(2)動點在曲線
上,動點
在直線
上,定點
的坐標為
,求
的最小值.
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,以短軸端點和焦點為頂點的四邊形的周長為
.
(Ⅰ)求橢圓的標準方程及焦點坐標.
(Ⅱ)過橢圓的右焦點作
軸的垂線,交橢圓于
、
兩點,過橢圓上不同于點
、
的任意一點
,作直線
、
分別交
軸于
、
兩點.證明:點
、
的橫坐標之積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:=2px(p>0)的準線方程為x=-
,F為拋物線的焦點
(I)求拋物線C的方程;
(II)若P是拋物線C上一點,點A的坐標為(,2),求
的最小值;
(III)若過點F且斜率為1的直線與拋物線C交于M,N兩點,求線段MN的中點坐標。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點為拋物線
的焦點,
為拋物線
上三點,且點
在第一象限,直線
經過點
與拋物線
在點
處的切線平行,點
為
的中點.
(1)證明:與
軸平行;
(2)求面積
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某手機生產廠商為迎接5G時代的到來,要生產一款5G手機,在生產之前,該公司對手機屏幕的需求尺寸進行社會調查,共調查了400人,將這400人按對手機屏幕的需求尺寸分為6組,分別是:,
,
,
,
,
(單位:英寸),得到如下頻率分布直方圖:
其中,屏幕需求尺寸在的一組人數為50人.
(1)求a和b的值;
(2)用分層抽樣的方法在屏幕需求尺寸為和
兩組人中抽取6人參加座談,并在6人中選擇2人做代表發言,則這2人來自同一分組的概率是多少?
(3)若以廠家此次調查結果的頻率作為概率,市場隨機調查兩人,這兩人屏幕需求尺寸分別在和
的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中
組小鼠給服甲離子溶液,
組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經過一段時間后用某種科學方法測算出殘留在小鼠體內離子的百分比.根據試驗數據分別得到如下直方圖:
記為事件:“乙離子殘留在體內的百分比不低于
”,根據直方圖得到
的估計值為
.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數據用該組區間的中點值為代表).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}中的項按順序可以排成如圖的形式,第一行1項,排a1;第二行2項,從左到右分別排a2,a3;第三行3項,……依此類推,設數列{an}的前n項和為Sn,則滿足Sn>2019的最小正整數n的值為()
A. 20B. 21C. 26D. 27
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市規定,高中學生在校期間須參加不少于80小時的社區服務才合格.某校隨機抽取20位學生參加社區服務的數據,按時間段(單位:小時)進行統計,其頻率分布直方圖如圖所示.
(1)求抽取的20人中,參加社區服務時間不少于90小時的學生人數;
(2)從參加社區服務時間不少于90小時的學生中任意選取2人,求所選學生的參加社區服務時間在同一時間段內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某闖關游戲規劃是:先后擲兩枚骰子,將此試驗重復輪,第
輪的點數分別記為
,如果點數滿足
,則認為第
輪闖關成功,否則進行下一輪投擲,直到闖關成功,游戲結束.
(1)求第1輪闖關成功的概率;
(2)如果第輪闖關成功所獲的獎金(單位:元)
,求某人闖關獲得獎金不超過2500元的概率;
(3)如果游戲只進行到第4輪,第4輪后無論游戲成功與否,都終止游戲,記進行的輪數為隨機變量,求
的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com