【題目】設不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a、b∈M,
(1)證明:| a+
b|<
;
(2)比較|1﹣4ab|與2|a﹣b|的大小,并說明理由.
【答案】
(1)解:記f(x)=|x﹣1|﹣|x+2|= ,
由﹣2<﹣2x﹣1<0解得﹣ <x<
,則M=(﹣
,
).
∵a、b∈M,∴ ,
所以| a+
b|≤
|a|+
|b|<
×
+
×
=
(2)解:由(1)得a2< ,b2<
.
因為|1﹣4ab|2﹣4|a﹣b|2=(1﹣8ab+16a2b2)﹣4(a2﹣2ab+b2)
=(4a2﹣1)(4b2﹣1)>0,
所以|1﹣4ab|2>4|a﹣b|2,故|1﹣4ab|>2|a﹣b|
【解析】(1)利用絕對值不等式的解法求出集合M,利用絕對值三角不等式直接證明:| a+
b|<
;(2)利用(1)的結果,說明ab的范圍,比較|1﹣4ab|與2|a﹣b|兩個數的平方差的大小,即可得到結果.
科目:高中數學 來源: 題型:
【題目】實數a,b滿足ab>0且a≠b,由a、b、 、
按一定順序構成的數列( )
A.可能是等差數列,也可能是等比數列
B.可能是等差數列,但不可能是等比數列
C.不可能是等差數列,但可能是等比數列
D.不可能是等差數列,也不可能是等比數列
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= +acosx,g(x)是f(x)的導函數.
(1)若f(x)在 處的切線方程為y=
,求a的值;
(2)若a≥0且f(x)在x=0時取得最小值,求a的取值范圍;
(3)在(1)的條件下,當x>0時, .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是公差不為0的等差數列,Sn為數列{an}的前n項和,S5=20,a1 , a3 , a7成等比數列.
(1)求數列{an}的通項公式;
(2)若bn+1=bn+an , 且b1=1,求數列{ }的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AB⊥AD,AD∥BC,AD= BC=2,E在BC上,且BE=
AB=1,側棱PA⊥平面ABCD.
(1)求證:平面PDE⊥平面PAC;
(2)若△PAB為等腰直角三角形. (i)求直線PE與平面PAC所成角的正弦值;
(ii)求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 ,函數
,若函數f(x)圖象的兩個相鄰的對稱軸間的距離為
.
(1)求函數f(x)的單調增區間;
(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若△ABC滿足f(A)=1,a=3,BC邊上的中線長為3,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=e ﹣
,其中e為自然對數的底數.
(1)設g(x)=(x+1)f′(x)(其中f′(x)為f(x)的導函數),判斷g(x)在(﹣1,+∞)上的單調性;
(2)若F(x)=ln(x+1)﹣af(x)+4無零點,試確定正數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com